Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 164986, 9 pages
http://dx.doi.org/10.1155/2010/164986
Research Article

Bone Marrow Derivation of Interstitial Cells of Cajal in Small Intestine Following Intestinal Injury

State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Combined Injury, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China

Received 1 September 2009; Revised 24 December 2009; Accepted 27 January 2010

Academic Editor: Ronnie Gallagher

Copyright © 2010 Dengqun Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Farrugia, “Interstitial cells of Cajal in health and disease,” Neurogastroenterology and Motility, vol. 20, supplement 1, pp. 54–63, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. J. Dickens, G. D. S. Hirst, and T. Tomita, “Identification of rhythmically active cells in Guinea-pig stomach,” Journal of Physiology, vol. 514, no. 2, pp. 515–531, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. H. M. Cousins, F. R. Edwards, H. Hickey, C. E. Hill, and G. D. S. Hirst, “Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the Guinea-pig gastric antrum,” Journal of Physiology, vol. 550, no. 3, pp. 829–844, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. S. M. Ward, E. A. H. Beckett, X. Y. Wang, F. Baker, M. Khoyi, and K. M. Sanders, “Interstitial cells of Cajal mediate cholinergic neurotransmission from enteric motor neurons,” Journal of Neuroscience, vol. 20, no. 4, pp. 1393–1403, 2000. View at Google Scholar · View at Scopus
  5. H. Suzuki, S. M. Ward, Y. R. Bayguinov, F. R. Edwards, and G. D. S. Hirst, “Involvement of intramuscular interstitial cells in nitrergic inhibition in the mouse gastric antrum,” Journal of Physiology, vol. 546, no. 3, pp. 751–763, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. P. R. Strege, Y. Ou, L. Sha et al., “Sodium current in human intestinal interstitial cells of Cajal,” American Journal of Physiology, vol. 285, no. 6, pp. G1111–G1121, 2003. View at Google Scholar · View at Scopus
  7. G. Farrugia, S. Lei, X. Lin et al., “A major role for carbon monoxide as an endogenous hyperpolarizing factor in the gastrointestinal tract,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8567–8570, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Kaszuba-Zwoinska, K. Gil, A. Ziomber et al., “Loss of interstitial cells of Cajal after pulsating electromagnetic field (PEMF) in gastrointestinal tract of the rats,” Journal of Physiology and Pharmacology, vol. 56, no. 3, pp. 421–432, 2005. View at Google Scholar · View at Scopus
  9. C. J. Streutker, J. D. Huizinga, D. K. Driman, and R. H. Riddell, “Interstitial cells of Cajal in health and disease—part I: normal ICC structure and function with associated motility disorders,” Histopathology, vol. 50, no. 2, pp. 176–189, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Yanagida, H. Yanase, K. M. Sanders, and S. M. Ward, “Intestinal surgical resection disrupts electrical rhythmicity, neural responses, and interstitial cell networks,” Gastroenterology, vol. 127, no. 6, pp. 1748–1759, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. F. Mei, B. Yu, H. Ma, H.-J. Zhang, and D.-S. Zhou, “Interstitial cells of Cajal could regenerate and restore their normal distribution after disrupted by intestinal transection and anastomosis in the adult Guinea pigs,” Virchows Archiv, vol. 449, no. 3, pp. 348–357, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. H. M. Young, D. Ciampoli, B. R. Southwell, and D. F. Newgreen, “Origin of interstitial cells of Cajal in the mouse intestine,” Developmental Biology, vol. 180, no. 1, pp. 97–107, 1996. View at Publisher · View at Google Scholar · View at Scopus
  13. L. Lecoin, G. Gabella, and N. Le Douarin, “Origin of the c-kit-positive interstitial cells in the avian bowel,” Development, vol. 122, no. 3, pp. 725–733, 1996. View at Google Scholar · View at Scopus
  14. S. Torihashi, S. M. Ward, and K. M. Sanders, “Development of c-kit-positive cells and the onset of electrical rhythmicity in murine small intestine,” Gastroenterology, vol. 112, no. 1, pp. 144–155, 1997. View at Google Scholar · View at Scopus
  15. A. Lorincz, D. Redelman, V. J. Horváth, M. R. Bardsley, H. Chen, and T. Ordög, “Progenitors of interstitial cells of Cajal in the postnatal murine stomach,” Gastroenterology, vol. 134, no. 4, pp. 1083–1093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Yeo and A. Mathur, “Autologous bone marrow-derived stem cells for ischemic heart failure: REGENERATE-IHD trial,” Regenerative Medicine, vol. 4, no. 1, pp. 119–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. L. Dengqun, W. Fengchao, Z. Zhongmin et al., “Long-term repopulation effects of donor BMDCs on intestinal epithelium,” Digestive Diseases and Sciences. In press. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Okabe, M. Ikawa, K. Kominami, T. Nakanishi, and Y. Nishimune, “‘Green mice’ as a source of ubiquitous green cells,” FEBS Letters, vol. 407, no. 3, pp. 313–319, 1997. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Komori, S. Tsuji, M. Tsujii et al., “Involvement of bone marrow-derived cells in healing of experimental colitis in rats,” Wound Repair and Regeneration, vol. 13, no. 1, pp. 109–118, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. A. R. Simard and S. Rivest, “Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia,” FASEB Journal, vol. 18, no. 9, pp. 998–1000, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. S. Krause, N. D. Theise, M. I. Collector et al., “Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell,” Cell, vol. 105, no. 3, pp. 369–377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Alvarez-Dolado, R. Pardal, J. M. Garcia-Verdugo et al., “Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes,” Nature, vol. 425, no. 6961, pp. 968–973, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Okamoto, T. Yajima, M. Yamazaki et al., “Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract,” Nature Medicine, vol. 8, no. 9, pp. 1011–1017, 2002. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Okamoto, T. Matsumoto, and M. Watanabe, “Regeneration of the intestinal epithelia: regulation of bone marrow-derived epithelial cell differentiation towards secretory lineage cells,” Human Cell, vol. 19, no. 2, pp. 71–75, 2006. View at Google Scholar · View at Scopus
  25. M. Brittan, T. Hunt, R. Jeffery et al., “Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon,” Gut, vol. 50, no. 6, pp. 752–757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. Y. Kitamura, T. Okazaki, Y. Nagatsuka, Y. Hirabayashi, S. Kato, and K. Hayashi, “Immunohistochemical distribution of phosphatidylglucoside using anti-phosphatidylglucoside monoclonal antibody (DIM21),” Biochemical and Biophysical Research Communications, vol. 362, no. 2, pp. 252–255, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Okamoto and M. Watanabe, “Cellular and molecular mechanisms of the epithelial repair in IBD,” Digestive Diseases and Sciences, vol. 50, supplement 1, pp. S34–S38, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Nishida, S. Tsuji, M. Tsujii et al., “Cultured bone marrow cell local implantation accelerates healing of ulcers in mice,” Journal of Gastroenterology, vol. 43, no. 2, pp. 124–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. M. Komori, S. Tsuji, M. Tsujii et al., “Efficiency of bone marrow-derived cells in regeneration of the stomach after induction of ethanol-induced ulcers in rats,” Journal of Gastroenterology, vol. 40, no. 6, pp. 591–599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Ozaki, T. Kawai, C. W. Shuttleworth et al., “Isolation and characterization of resident macrophages from the smooth muscle layers of murine small intestine,” Neurogastroenterology and Motility, vol. 16, no. 1, pp. 39–51, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. H. Maeda, A. Yamagata, S. Nishlkawa et al., “Requirement of c-kit for development of intestinal pacemaker system,” Development, vol. 116, no. 2, pp. 369–375, 1992. View at Google Scholar · View at Scopus
  32. S. Ishii, S. Tsuji, M. Tsujii et al., “Restoration of gut motility in Kit-deficient mice by bone marrow transplantation,” Journal of Gastroenterology, vol. 44, no. 8, pp. 834–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Klüppel, J. D. Huizinga, J. Malysz, and A. Bernstein, “Developmental origin and Kit-dependent development of the interstitial cells of Cajal in the mammalian small intestine,” Developmental Dynamics, vol. 211, no. 1, pp. 60–71, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Nakahara, K. Isozaki, J.-M. Vanderwinden et al., “Dose-dependent and time-limited proliferation of cultured murine interstitial cells of Cajal in response to stem cell factor,” Life Sciences, vol. 70, no. 20, pp. 2367–2376, 2002. View at Publisher · View at Google Scholar · View at Scopus
  35. M.-S. Faussone-Pellegrini, M.-G. Vannucchi, O. Ledder, T.-Y. Huang, and M. Hanani, “Plasticity of interstitial cells of Cajal: a study of mouse colon,” Cell and Tissue Research, vol. 325, no. 2, pp. 211–217, 2006. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Mei, J. Han, Y. Huang, Z.-Y. Jiang, C.-J. Xiong, and D.-S. Zhou, “Plasticity of interstitial cells of Cajal: a study in the small intestine of adult Guinea pigs,” Anatomical Record, vol. 292, no. 7, pp. 985–993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. F. Mei, S. Guo, Y.-T. He et al., “Apoptosis of interstitial cells of Cajal, smooth muscle cells, and enteric neurons induced by intestinal ischemia and reperfusion injury in adult Guinea pigs,” Virchows Archiv, vol. 454, no. 4, pp. 401–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Zhang, J.-F. Gong, W. Zhang, W.-M. Zhu, and J.-S. Li, “Effects of transplanted bone marrow mesenchymal stem cells on the irradiated intestine of mice,” Journal of Biomedical Science, vol. 15, no. 5, pp. 585–594, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. A. Armesilla-Diaz, G. Elvira, and A. Silva, “p53 regulates the proliferation, differentiation and spontaneous transformation of mesenchymal stem cells,” Experimental Cell Research, vol. 315, no. 20, pp. 3598–3610, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Miura, Y. Miura, H. M. Padilla-Nash et al., “Accumulated chromosomal instability in murine bone marrow mesenchymal stem cells leads to malignant transformation,” Stem Cells, vol. 24, no. 4, pp. 1095–1103, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Z. Rizvi, J. R. Swain, P. S. Davies et al., “Bone marrow-derived cells fuse with normal and transformed intestinal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6321–6325, 2006. View at Publisher · View at Google Scholar · View at Scopus