Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 189252, 8 pages
http://dx.doi.org/10.1155/2010/189252
Research Article

Evaluation of Cytotoxicity and Genotoxicity of Inula viscosa Leaf Extracts with Allium Test

Department of Biology, Faculty of Art and Science, Adnan Menderes University, 09010 Aydın, Turkey

Received 30 October 2009; Revised 1 March 2010; Accepted 7 April 2010

Academic Editor: Adewale Adeyinka

Copyright © 2010 Tülay Aşkin Çelik and Özlem Sultan Aslantürk. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Zink and J. Chaffin, “Herbal health products: what family physicians need to know,” American Family Physician, vol. 58, no. 5, pp. 1133–1140, 1998. View at Google Scholar · View at Scopus
  2. A. A. Basaran, T.-W. Yu, M. J. Plewa, and D. Anderson, “An investigation of some Turkish herbal medicines in Salmonella typhimurium and in the COMET assay in human lymphocytes,” Teratogenesis Carcinogenesis and Mutagenesis, vol. 16, no. 2, pp. 125–138, 1996. View at Google Scholar · View at Scopus
  3. M. J. Plewa and E. D. Wagner, “Activation of promutagens by green plants,” Annual Review of Genetics, vol. 27, pp. 93–113, 1993. View at Google Scholar
  4. M. Higashimoto, J. Purintrapiban, K. Kataoka et al., “Mutagenicity and antimutagenicity of extracts of three spices and a medicinal plant in Thailand,” Mutation Research, vol. 303, no. 3, pp. 135–142, 1993. View at Publisher · View at Google Scholar · View at Scopus
  5. O. Schimmer, A. Kruger, H. Paulini, and F. Haefele, “An evaluation of 55 commercial plant extracts in the Ames mutagenicity test,” Pharmazie, vol. 49, no. 6, pp. 448–451, 1994. View at Google Scholar · View at Scopus
  6. F. Kassie, W. Parzefall, S. Musk et al., “Genotoxic effects of crude juices from Brassica vegetables and juices and extracts from phytopharmaceutical preparations and spices of cruciferous plants origin in bacterial and mammalian cells,” Chemico-Biological Interactions, vol. 102, no. 1, pp. 1–16, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Aşkın Çelik and Ö. S. Aslantürk, “Cytotoxic and genotoxic effects of Lavandula stoechas aqueous extracts,” Biologia, vol. 62, no. 3, pp. 292–296, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. B. N. Ames, “Food constituents as a source of mutagens, carcinogens and anticarcinogens,” in Genetic Toxicology of the Diet, I. Knudsen, Ed., pp. 55–62, Alan R. Liss, New York, NY, USA, 1986. View at Google Scholar
  9. I. C. Fernandes De Sá Ferreira and V. M. Ferrão Vargas, “Mutagenicity of medicinal plant extracts in Salmonella/microsome assay,” Phytotherapy Research, vol. 13, no. 5, pp. 397–400, 1999. View at Publisher · View at Google Scholar · View at Scopus
  10. E. L. Wynder, N. E. L. Hall, and M. Polansky, “Epidemiology of coffee and pancreatic cancer,” Cancer Research, vol. 43, no. 8, pp. 3900–3906, 1983. View at Google Scholar · View at Scopus
  11. M. Nagao, K. Wakabayashi, Y. Fujita, T. Tahira, T. Ochiaia, and T. Sugimura, “Mutagenic compounds in soy sauce, Chinese cabbage, coffee and herbal teas,” in Genetic Toxicology of the Diet, I. Knudsen, Ed., pp. 55–62, Alan R. Liss, New York, NY, USA, 1986. View at Google Scholar
  12. T. Nguyen, L. Fluss, R. Hodej, G. Ginther, and T. Leighton, “The distribution of mutagenic activity in red rose and white wines,” Mutation Research, vol. 223, pp. 205–212, 1989. View at Google Scholar
  13. M. T. Brito, A. Martinez, and N. F. C. Cadavid, “Mutagenic activity in regional foods and beverages from the Venezuelan Andean region,” Mutation Research, vol. 243, no. 2, pp. 115–120, 1990. View at Google Scholar · View at Scopus
  14. D. Al-Eisawi, Field Fuide to Wild Flowers in Jordan and Neighboring Countries, Jordan Foundation Press, Amman, Jordan, 1998.
  15. T. Baytop, Therapy with Medicinal Plants in Turkey, Nobel Medical Publication, İstanbul, Turkey, 1999.
  16. N. M. Al-Dissi, A. S. Salhab, and H. A. Al-Hajj, “Effects of Inula viscosa leaf extracts on abortion and implantation in rats,” Journal of Ethnopharmacology, vol. 77, no. 1, pp. 117–121, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Barbetti, I. Chiappini, G. Fardella, and A. Menghini, “A new eudesmane acid from Dittrichia (Inula) viscosa,” Planta Medica, vol. 51, p. 471, 1985. View at Google Scholar
  18. L. Lauro and C. Rolih, “Observations and research on an extract of Inula viscosa,” Bollettino della Societa Italiana di Biologia Sperimentale, vol. 66, no. 9, pp. 829–834, 1990. View at Google Scholar · View at Scopus
  19. E. Lev and Z. Amar, “Ethnopharmacological survey of traditional drugs sold in Israel at the end of the 20th century,” Journal of Ethnopharmacology, vol. 72, no. 1-2, pp. 191–205, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. Z. Yaniv, A. Dafni, J. Friedman, and D. Palevitch, “Plants used for the treatment of diabetes in Israel,” Journal of Ethnopharmacology, vol. 19, no. 2, pp. 145–151, 1987. View at Google Scholar · View at Scopus
  21. M. Maoz, Y. Kashman, and I. Neeman, “Isolation and identification of a new antifungal sesquiterpene lactone from Inula viscosa,” Planta Medica, vol. 65, no. 3, pp. 281–282, 1999. View at Google Scholar · View at Scopus
  22. J. R. Qasem, A. S. Al-Abed, and M. A. Abu-Blan, “Antifungal activity of clammy inula (Inula viscosa) on Helminthrosporium sativum and Fusarium oxysporum f. sp. lycopersici,” Phytopathologia Mediterranea, vol. 34, pp. 7–14, 1995. View at Google Scholar
  23. J. Debat, “Inula extract, its method of preparation and its use as pharmaceutical,” US patent no. 4254112, 1991.
  24. Y. Cohen, A. Baider, B. H. Ben-Daniel, and Y. Ben-Daniel, “Fungicidal preparations from Inula viscosa,” Plant Protection Science, vol. 38, pp. 629–630, 2002. View at Google Scholar
  25. C. Lastra, A. Lopez, and V. Motilva, “Gastroprotection and prostaglandin E2 generation in rats by flavonoids of Dittrichia viscosa,” Planta Medica, vol. 59, no. 6, pp. 497–501, 1993. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Alkofahi and A. H. Atta, “Pharmacological screening of the anti-ulcerogenic effects of some Jordanian medicinal plants in rats,” Journal of Ethnopharmacology, vol. 67, no. 3, pp. 341–345, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. N. R. Farnsworth, A. S. Bingel, G. A. Cordell, F. A. Crane, and H. S. Fong, “Potential value of plants as sources of new antifertility agents II,” Journal of Pharmaceutical Sciences, vol. 64, no. 5, pp. 717–754, 1975. View at Google Scholar · View at Scopus
  28. F. Karim, A. Al-Okleh, S. Suleiman, and S. Quraan, Poisonous Plants in Jordan, Jordan Natural History Museum, Irbid, Jordan, 1990.
  29. M. Maoz and I. Neeman, “Effect of Inula viscosa extract on chitin synthesis in dermatophytes and Candida albicans,” Journal of Ethnopharmacology, vol. 71, no. 3, pp. 479–482, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. G. R. Schinella, H. A. Tournier, J. M. Prieto, P. Mordujovich, and J. L. Rios, “Antioxidant activity of anti-inflammatory plant extracts,” Life Sciences, vol. 70, no. 9, pp. 1023–1033, 2002. View at Publisher · View at Google Scholar · View at Scopus
  31. Y. Oka, B.-H. Ben-Daniel, and Y. Cohen, “Nematicidal activity of powder and extracts of Inula viscosa,” Nematology, vol. 3, no. 8, pp. 735–742, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. A. Ulubelen, S. Öksüz, and N. Gören, “Sesquiterpene acids from Inula viscosa,” Phytochemistry, vol. 26, no. 4, pp. 1223–1224, 1987. View at Google Scholar · View at Scopus
  33. E. Wollenweber, K. Mayer, and J. N. Roitman, “Exudate flavonoids of Inula viscosa,” Phytochemistry, vol. 30, no. 7, pp. 2445–2446, 1991. View at Google Scholar · View at Scopus
  34. B. Marongiu, A. Piras, F. Pani, S. Porcedda, and M. Ballero, “Extraction, separation and isolation of essential oils from natural matrices by supercritical CO2,” Flavour and Fragrance Journal, vol. 18, no. 6, pp. 505–509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Fiskesjo, “A 2-3 day plant test for toxicity assessment by measuring the mean root growth of onions (Allium cepa L.),” Environmental Toxicology and Water Quality, vol. 8, no. 4, pp. 461–470, 1993. View at Publisher · View at Google Scholar · View at Scopus
  36. G. Fiskesjö, “Allium test for screening chemicals; evaluation of cytological parameters,” in Plants for Environmental Studies, W. Wang, J. W. Gorsuch, and J. S. Hughes, Eds., pp. 308–333, Lewis, New York, NY, USA, 1997. View at Google Scholar
  37. G. A. Sega, “A review of the genetic effects of ethyl methanesulfonate,” Mutation Research, vol. 134, no. 2-3, pp. 113–142, 1984. View at Google Scholar · View at Scopus
  38. T. Platzek, G. Bochert, and R. Meister, “Embryotoxicity induced by alkylating agents: 9. Low dose prenatal-toxic risk estimation of ethylmethanesulfonate based on no-observed-adverse-effect-level risk factor approach, dose-response relationships, and molecular dosimetry,” Teratogenesis Carcinogenesis and Mutagenesis, vol. 15, no. 2, pp. 81–92, 1995. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Bökel, “EMS screens: from mutagenesis to screening and mapping,” Methods in Molecular Biology, vol. 420, pp. 119–138, 2008. View at Google Scholar · View at Scopus
  40. L. Müller, E. Gocke, T. Lavé, and T. Pfister, “Ethyl methanesulfonate toxicity in viracept-a comprehensive human risk assessment based on threshold data for genotoxicity,” Toxicology Letters, vol. 190, no. 3, pp. 317–329, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. M. Pavlica, V. Besendorfer, J. Roša, and D. Papěs, “The cytotoxic effect of wastewater from the phosphoric gypsum depot on common oak (Quercus robur L.) and shallot (Allium cepa var. ascalonicum),” Chemosphere, vol. 41, no. 10, pp. 1519–1527, 2000. View at Publisher · View at Google Scholar · View at Scopus
  42. D. Antonsie-wiez, “Analysis of the cell cycle in the root meristem of Allium cepa under the influence of Leda krin,” Folia Histochemica et Cytobiologica, vol. 26, pp. 79–96, 1990. View at Google Scholar
  43. B. B. Panda and U. K. Sahu, “Induction of abnormal spindle function and cytokinesis inhibition in mitotic cells of Allium cepa by the organophosphorus insecticide fensulfothion,” Cytobios, vol. 42, no. 167-168, pp. 147–155, 1985. View at Google Scholar · View at Scopus
  44. C. B. S. R. Sharma, “Plant meristems as monitors of genetic toxicity of environmental chemicals,” Current Science, vol. 52, pp. 1000–1002, 1983. View at Google Scholar
  45. E. Rojas, L. A. Herrera, M. Sordo et al., “Mitotic index and cell proliferation kinetics for identification of antineoplastic activity,” Anti-Cancer Drugs, vol. 4, no. 6, pp. 637–640, 1993. View at Google Scholar · View at Scopus
  46. R. Sudhakar, K. N. Ninge Gowda, and G. Venu, “Mitotic abnormalities induced by silk dyeing industry effluents in the cells of Allium cepa,” Cytologia, vol. 66, no. 3, pp. 235–239, 2001. View at Google Scholar · View at Scopus
  47. V. C. Mercykutty and J. Stephen, “Adriamycin induced genetic toxicity as demonstrated by Allium cepa test,” Cytologia, vol. 45, no. 4, pp. 769–777, 1980. View at Google Scholar · View at Scopus
  48. E. Schulze and M. Kirschner, “Microtubule dynamics in interphase cells,” Journal of Cell Biology, vol. 102, no. 3, pp. 1020–1031, 1986. View at Google Scholar · View at Scopus
  49. T. Aşkin Çelik and Ö. S. Aslantürk, “Anti-mitotic and anti-genotoxic effects of Plantago lanceolata aqueous extract on Allium cepa root tip meristem cells,” Biologia, vol. 61, no. 6, pp. 693–697, 2006. View at Google Scholar · View at Scopus
  50. A. Akinboro and A. A. Bakare, “Cytotoxic and genotoxic effects of aqueous extracts of five medicinal plants,” Journal of Ethnopharmacology, vol. 112, no. 3, pp. 470–475, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. H. Babich, M. A. Segall, and K. D. Fox, “The Allium test—a simple, eukaryote genotoxicity assay,” American Biology Teacher, vol. 59, no. 9, pp. 580–583, 1997. View at Google Scholar · View at Scopus
  52. S. A. Shahin and K. H. H. El-Amoodi, “Induction of numerical chromosomal aberrations during DNA synthesis using the fungicides nimrod and rubigan-4 in root tips of Vicia faba L.,” Mutation Research, vol. 261, no. 3, pp. 169–176, 1991. View at Publisher · View at Google Scholar · View at Scopus
  53. E. Rencüzoğulları, H. B. İla, A. Kayraldiz, and M. Topaktaş, “Chromosome aberrations and sister chromatid exchanges in cultured human lymphocytes treated with sodium metabisulfite, a food preservative,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 490, no. 2, pp. 107–112, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. A. A. El-Ghamery, M. A. El-Kholy, and M. A. A. El-Yousser, “Evaluation of cytological effects of Zn2+ in relation to germination and root growth of Nigella sativa L. and Triticum aestivum L.,” Mutation Research, vol. 537, pp. 29–41, 2003. View at Google Scholar
  55. A. N. Gömürgen, “Cytological effect of the potassium metabisulphite and potassium nitrate food preservative on root tips of Allium cepa L.,” Cytologia, vol. 70, no. 2, pp. 119–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. Ş. Türkoglu, “Genotoxicity of five food preservatives tested on root tips of Allium cepa L.,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 626, no. 1-2, pp. 4–14, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. S. H. H. Swierenga, J. A. Heddle, E. A. Sigal et al., “Recommended protocols based on a survey of current practice in genotoxicity testing laboratories, IV. Chromosome aberration and sister-chromatid exchange in Chinese hamster ovary, V79 Chinese hamster lung and human lymphocyte cultures,” Mutation Research, vol. 246, no. 2, pp. 301–322, 1991. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Sharma and S. Sen, Chromosome Botany, Science, Enfield, NH, USA, 2002.
  59. R. J. Singh, Plant Cytogenetics, CRC Press, Boca Raton, Fla, USA, 2003.
  60. M. I. Soliman, “Genotoxicity testing of neem plant (Azadirachta indica A. Juss.) using the Allium cepa chromosome aberration assay,” Journal of Biological Sciences, vol. 1, no. 11, pp. 1021–1027, 2001. View at Google Scholar
  61. C. J. Bidau, A. G. Amat, M. Yajia, D. A. Marti, A. G. Riglos, and A. Silvestroni, “Evaluation of the genotoxicity of aqueous extracts of Ilex paraguariensis St. Hil. (Aquifoliaceae) using the Allium test,” Cytologia, vol. 69, no. 2, pp. 109–117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  62. R. J. Albertini, D. Anderson, G. R. Douglas et al., “IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans,” Mutation Research, vol. 463, no. 2, pp. 111–172, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Krishna and M. Hayashi, “In vivo rodent micronucleus assay: protocol, conduct and data interpretation,” Mutation Research, vol. 455, no. 1-2, pp. 155–166, 2000. View at Publisher · View at Google Scholar · View at Scopus
  64. T. A. Aşkin Çelik and Ö. S. Aslantürk, “Investigation of cytotoxic and genotoxic effects of Ecballium elaterium juice based on Allium test,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 31, no. 9, pp. 591–596, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  65. G. C. Kaushik, “Cytological effects of Lantana camara L. leaves extract on Vicia faba root tip cells,” Advanced Plant Science, vol. 9, pp. 159–164, 1996. View at Google Scholar
  66. S. P. Borah and J. Talukdar, “Studies on the cytotoxic effects of extract of castor seed (Ricinus communis L.),” Cytologia, vol. 67, no. 3, pp. 235–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  67. A. N. Gömürgen, F. Mutlu, and S. Bozcuk, “Effects of polyamines (Putrescine, spermidine and spermine) on root tip mitosis and chromosomes in Allium cepa L.,” Cytologia, vol. 70, no. 2, pp. 217–224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. Medical dictionary, http://medical-dictionary.thefreedictionary.com/ghost+cell.