Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 236528, 11 pages
http://dx.doi.org/10.1155/2010/236528
Review Article

Comparative Pathogenesis and Systems Biology for Biodefense Virus Vaccine Development

Departments of Pathology and Microbiology & Immunology, Center for Biodefense and Emerging Infectious Diseases, Sealy Center for Vaccine Development, and Institute of Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA

Received 30 September 2009; Revised 21 January 2010; Accepted 8 March 2010

Academic Editor: Yongqun Oliver He

Copyright © 2010 Gavin C. Bowick and Alan D. T. Barrett. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Carrion Jr., J. L. Patterson, C. Johnson et al., “A ML29 reassortant virus protects guinea pigs against a distantly related Nigerian strain of Lassa virus and can provide sterilizing immunity,” Vaccine, vol. 25, no. 20, pp. 4093–4102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. I. S. Lukashevich, J. Patterson, R. Carrion et al., “A live attenuated vaccine for Lassa fever made by reassortment of Lassa and Mopeia viruses,” Journal of Virology, vol. 79, no. 22, pp. 13934–13942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. P. J. Bredenbeek, R. Molenkamp, W. J. M. Spaan et al., “A recombinant Yellow Fever 17D vaccine expressing Lassa virus glycoproteins,” Virology, vol. 345, no. 2, pp. 299–304, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. P. Fisher-Hoch, L. Hutwagner, B. Brown, and J. B. McCormick, “Effective vaccine for lassa fever,” Journal of Virology, vol. 74, no. 15, pp. 6777–6783, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. T. W. Geisbert, S. Jones, E. A. Fritz et al., “Development of a new vaccine for the prevention of Lassa fever,” PLoS Medicine, vol. 2, no. 6, article e183, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Fisher-Hoch, J. B. McCormick, D. Auperin et al., “Protection of rhesus monkeys from fatal Lassa fever by vaccination with a recombinant vaccinia virus containing the Lassa virus glycoprotein gene,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 1, pp. 317–321, 1989. View at Google Scholar · View at Scopus
  7. M. Bharadwaj, C. R. Lyons, I. A. Wortman, and B. Hjelle, “Intramuscular inoculation of Sin Nombre hantavirus cDNAs induces cellular and humoral immune responses in BALB/c mice,” Vaccine, vol. 17, no. 22, pp. 2836–2843, 1999. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Bharadwaj, K. Mirowsky, C. Ye et al., “Genetic vaccines protect against Sin Nombre hantavirus challenge in the deer mouse (Peromyscus maniculatus),” Journal of General Virology, vol. 83, no. 7, pp. 1745–1751, 2002. View at Google Scholar · View at Scopus
  9. A. Tuffs, “Experimental vaccine may have saved Hamburg scientist from Ebola fever,” British Medical Journal, vol. 338, article b1223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. I. Maiztegui, K. T. McKee Jr., J. G. B. Oro et al., “Protective efficacy of a live attenuated vaccine against argentine hemorrhagic fever,” Journal of Infectious Diseases, vol. 177, no. 2, pp. 277–283, 1998. View at Google Scholar · View at Scopus
  11. S. Bambini and R. Rappuoli, “The use of genomics in microbial vaccine development,” Drug Discovery Today, vol. 14, no. 5-6, pp. 252–260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Rappuoli and A. Covacci, “Reverse vaccinology and genomics,” Science, vol. 302, no. 5645, p. 602, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. N. Sevilla, D. B. McGavern, C. Teng, S. Kunz, and M. B. A. Oldstone, “Viral targeting of hematopoietic progenitors and inhibition of DC maturation as a dual strategy for immune subversion,” Journal of Clinical Investigation, vol. 113, no. 5, pp. 737–745, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. E. A. Fritz, J. B. Geisbert, T. W. Geisbert, L. E. Hensley, and D. S. Reed, “Cellular immune response to marburg virus infection in cynomolgus macaques,” Viral Immunology, vol. 21, no. 3, pp. 355–363, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. M. Djavani, O. R. Crasta, J. C. Zapata et al., “Early blood profiles of virus infection in a monkey model for Lassa fever,” Journal of Virology, vol. 81, no. 15, pp. 7960–7973, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Djavani, O. R. Crasta, Y. Zhang et al., “Gene expression in primate liver during viral hemorrhagic fever,” Virology Journal, vol. 6, p. 20, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. Hartman, L. Ling, S. T. Nichol, and M. L. Hibberd, “Whole-genome expression profiling reveals that inhibition of host innate immune response pathways by Ebola virus can be reversed by a single amino acid change in the VP35 protein,” Journal of Virology, vol. 82, no. 11, pp. 5348–5358, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. A. L. Hartman, B. H. Bird, J. S. Towner, Z.-A. Antoniadou, S. R. Zaki, and S. T. Nichol, “Inhibition of IRF-3 activation by VP35 is critical for the high level of virulence of ebola virus,” Journal of Virology, vol. 82, no. 6, pp. 2699–2704, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. P. P. Powell, L. K. Dixon, and R. M. E. Parkhouse, “An IκB homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages,” Journal of Virology, vol. 70, no. 12, pp. 8527–8533, 1996. View at Google Scholar · View at Scopus
  20. J. G. Neilan, Z. Lu, G. F. Kutish, L. Zsak, T. L. Lewis, and D. L. Rock, “A conserved African swine fever virus IκB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine,” Virology, vol. 235, no. 2, pp. 377–385, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. C. L. Afonso, M. E. Piccone, K. M. Zaffuto et al., “African swine fever virus multigene family 360 and 530 genes affect host interferon response,” Journal of Virology, vol. 78, no. 4, pp. 1858–1864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Zsak, Z. Lu, T. G. Burrage et al., “African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants,” Journal of Virology, vol. 75, no. 7, pp. 3066–3076, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Ciancanelli, V. A. Volchkova, M. L. Shaw, V. E. Volchkov, and C. F. Basler, “Nipah virus sequesters inactive STAT1 in the nucleus via a P gene-encoded mechanism,” Journal of Virology, vol. 83, no. 16, pp. 7828–7841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. P. M. Haverty, M. C. Frith, and Z. Weng, “CARRIE web service: automated transcriptional regulatory network inference and interactive analysis,” Nucleic Acids Research, vol. 32, pp. W213–W216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. P. M. Haverty, U. Hansen, and Z. Weng, “Computational inference of transcriptional regulatory networks from expression profiling and transcription factor binding site identification,” Nucleic Acids Research, vol. 32, no. 1, pp. 179–188, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. E. M. Vela, G. C. Bowick, N. K. Herzog, and J. F. Aronson, “Genistein treatment of cells inhibits arenavirus infection,” Antiviral Research, vol. 77, no. 2, pp. 153–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. M. Vela, G. C. Bowick, N. K. Herzog, and J. F. Aronson, “Exploring kinase inhibitors as therapies for human arenavirus infections,” Future Virology, vol. 3, no. 3, pp. 243–251, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. A. Kolokoltsov, M. F. Saeed, A. N. Freiberg, M. R. Holbrook, and R. A. Davey, “Identification of novel cellular targets for therapeutic intervention against ebola virus infection by siRNA screening,” Drug Development Research, vol. 70, no. 4, pp. 255–265, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. T. D. Querec, R. S. Akondy, E. K. Lee et al., “Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans,” Nature Immunology, vol. 10, no. 1, pp. 116–125, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. Z. W. Wang, L. Sarmento, Y. Wang et al., “Attenuated rabies virus activates, while pathogenic rabies virus evades, the host innate immune responses in the central nervous system,” Journal of Virology, vol. 79, no. 19, pp. 12554–12565, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. P. B. Jahrling, R. A. Hesse, and J. B. Rhoderick, “Pathogenesis of a pichinde virus strain adapted to produce lethal infections in guinea pigs,” Infection and Immunity, vol. 32, no. 2, pp. 872–880, 1981. View at Google Scholar · View at Scopus
  32. J. F. Aronson, N. K. Herzog, and T. R. Jerrells, “Pathological and virological features of arenavirus disease in guinea pigs: comparison of two Pichinde virus strains,” American Journal of Pathology, vol. 145, no. 1, pp. 228–235, 1994. View at Google Scholar · View at Scopus
  33. G. C. Bowick, S. M. Fennewald, B. L. Elsom et al., “Differential signaling networks induced by mild and lethal hemorrhagic fever virus infections,” Journal of Virology, vol. 80, no. 20, pp. 10248–10252, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. C. Bowick, S. M. Fennewald, E. P. Scott et al., “Identification of differentially activated cell-signaling networks associated with Pichinde virus pathogenesis by using systems kinomics,” Journal of Virology, vol. 81, no. 4, pp. 1923–1933, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. G. C. Bowick, H. M. Spratt, A. E. Hogg et al., “Analysis of the differential host cell nuclear proteome induced by attenuated and virulent hemorrhagic arenavirus infection,” Journal of Virology, vol. 83, no. 2, pp. 687–700, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. G. C. Bowick, S. M. Fennewald, L. Zhang et al., “Attenuated and lethal variants of pichinde virus induce differential patterns of NF-?B activation suggesting a potential target for novel therapeutics,” Viral Immunology, vol. 22, no. 6, pp. 457–462, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. S. Lan, L. McLay, J. Aronson, H. Ly, and Y. Liang, “Genome comparison of virulent and avirulent strains of the Pichinde arenavirus,” Archives of Virology, vol. 153, no. 7, pp. 1241–1250, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Martinez-Sobrido, E. I. Zuniga, D. Rosario, A. Garcia-Sastre, and J. C. de la Torre, “Inhibition of the type I interferon response by the nucleoprotein of the prototypic arenavires lymphocytic choriomeningitis virus,” Journal of Virology, vol. 80, no. 18, pp. 9192–9199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Martinez-Sobrido, P. Giannakas, B. Cubitt, A. Garcia-Sastre, and J. C. de la Torre, “Differential inhibition of type I interferon induction by arenavirus nucleoproteins,” Journal of Virology, vol. 81, no. 22, pp. 12696–12703, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. S. Lan, L. M. Schelde, J. Wang, N. Kumar, H. Ly, and Y. Liang, “Development of infectious clones for virulent and avirulent pichinde viruses: a model virus to study arenavirus-induced hemorrhagic fevers,” Journal of Virology, vol. 83, no. 13, pp. 6357–6362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. I. S. Lukashevich, R. Maryankova, A. S. Vladyko et al., “Lassa and Mopeia virus replication in human monocytes/macrophages and in endothelial cells: different effects on IL-8 and TNF-a gene expression,” Journal of Medical Virology, vol. 59, no. 4, pp. 552–560, 1999. View at Google Scholar · View at Scopus
  42. D. Pannetier, C. Faure, M.-C. Georges-Courbot, V. Deubel, and S. Baize, “Human macrophages, but not dendritic cells, are activated and produce alpha/beta interferons in response to Mopeia virus infection,” Journal of Virology, vol. 78, no. 19, pp. 10516–10524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Baize, J. Kaplon, C. Faure, D. Pannetier, M.-C. Georges-Courbot, and V. Deubel, “Lassa virus infection of human dendritic cells and macrophages is productive but fails to activate cells,” Journal of Immunology, vol. 172, no. 5, pp. 2861–2869, 2004. View at Google Scholar · View at Scopus
  44. S. Mahanty, D. G. Bausch, R. L. Thomas et al., “Low levels of interleukin-8 and interferon-inducible protein-10 in serum are associated with fatal infections in acute Lassa fever,” Journal of Infectious Diseases, vol. 183, no. 12, pp. 1713–1721, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. B. Rockx, T. Baas, G. A. Zornetzer et al., “Early upregulation of acute respiratory distress syndrome-associated cytokines promotes lethal disease in an aged-mouse model of severe acute respiratory syndrome coronavirus infection,” Journal of Virology, vol. 83, no. 14, pp. 7062–7074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. R. Muller, J.-F. Saluzzo, N. Lopez et al., “Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment,” American Journal of Tropical Medicine and Hygiene, vol. 53, no. 4, pp. 405–411, 1995. View at Google Scholar · View at Scopus
  47. A. Billecocq, M. Spiegel, P. Vialat et al., “NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription,” Journal of Virology, vol. 78, no. 18, pp. 9798–9806, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Bouloy, C. Janzen, P. Vialat et al., “Genetic evidence for an interferon-antagonistic function of Rift Valley fever virus nonstructural protein NSs,” Journal of Virology, vol. 75, no. 3, pp. 1371–1377, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. P. Vialat, A. Billecocq, A. Kohl, and M. Bouloy, “The S segment of Rift Valley fever phlebovirus (Bunyaviridae) carries determinants for attenuation and virulence in mice,” Journal of Virology, vol. 74, no. 3, pp. 1538–1543, 2000. View at Publisher · View at Google Scholar · View at Scopus
  50. E. E. Schadt, “Molecular networks as sensors and drivers of common human diseases,” Nature, vol. 461, no. 7261, pp. 218–223, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. P. Shannon, A. Markiel, O. Ozier et al., “Cytoscape: a software environment for integrated models of biomolecular interaction networks,” Genome Research, vol. 13, no. 11, pp. 2498–2504, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Killcoyne, G. W. Carter, J. Smith, and J. Boyle, “Cytoscape: a community-based framework for network modeling,” Methods in Molecular Biology, vol. 563, pp. 219–239, 2009. View at Publisher · View at Google Scholar · View at Scopus
  53. S. E. Calvano, W. Xiao, D. R. Richards et al., “A network-based analysis of systemic inflammation in humans,” Nature, vol. 437, no. 7061, pp. 1032–1037, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. E. Fossum, C. C. Friedel, S. V. Rajagopala et al., “Evolutionarily conserved herpesviral protein interaction networks,” PLoS Pathogens, vol. 5, no. 9, Article ID e1000570, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. P. Uetz, Y.-A. Dong, C. Zeretzke et al., “Herpesviral protein networks and their interaction with the human proteome,” Science, vol. 311, no. 5758, pp. 239–242, 2006. View at Publisher · View at Google Scholar · View at Scopus
  56. M. A. Calderwood, K. Venkatesan, L. Xing et al., “Epstein-Barr virus and virus human protein interaction maps,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 18, pp. 7606–7611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Dohkan, A. Koike, and T. Takagi, “Improving the performance of an SVM-based method for predicting protein-protein interactions,” In Silico Biology, vol. 6, no. 6, pp. 515–529, 2006. View at Google Scholar · View at Scopus
  58. A. Koike and T. Takagi, “Prediction of protein-protein interaction sites using support vector machines,” Protein Engineering, Design and Selection, vol. 17, no. 2, pp. 165–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. J. Shen, J. Zhang, X. Luo et al., “Predicting protein-protein interactions based only on sequences information,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 11, pp. 4337–4341, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. R. Coleman, D. Papamichail, S. Skiena, B. Futcher, E. Wimmer, and S. Mueller, “Virus attenuation by genome-scale changes in codon pair bias,” Science, vol. 320, no. 5884, pp. 1784–1787, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. R. Brower-Sinning, D. M. Carter, C. J. Crevar, E. Ghedin, T. M. Ross, and P. V. Benos, “The role of RNA folding free energy in the evolution of the polymerase genes of the influenza A virus,” Genome Biology, vol. 10, no. 2, article R18, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. A. J. Cann, G. Stanway, P. J. Hughes et al., “Reversion to neurovirulence of the live-attenuated Sabin type 3 oral poliovirus vaccine,” Nucleic Acids Research, vol. 12, no. 20, pp. 7787–7792, 1984. View at Google Scholar · View at Scopus
  63. H.-G. Bae, C. Domingo, A. Tenorio et al., “Immune response during adverse events after 17D-derived yellow fever vaccination in Europe,” Journal of Infectious Diseases, vol. 197, no. 11, pp. 1577–1584, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. C. Domingo and M. Niedrig, “Safety of 17D derived yellow fever vaccines,” Expert Opinion on Drug Safety, vol. 8, no. 2, pp. 211–221, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. A. D. Barrett and D. E. Teuwen, “Yellow fever vaccine—how does it work and why do rare cases of serious adverse events take place?” Current Opinion in Immunology, vol. 21, no. 3, pp. 308–313, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. B. Pulendran, J. Miller, T. D. Querec et al., “Case of yellow fever vaccine-associated viscerotropic disease with prolonged viremia, robust adaptive immune responses, and polymorphisms in CCR5 and RANTES genes,” Journal of Infectious Diseases, vol. 198, no. 4, pp. 500–507, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. G. A. Poland, I. G. Ovsyannikova, and R. M. Jacobson, “Personalized vaccines: the emerging field of vaccinomics,” Expert Opinion on Biological Therapy, vol. 8, no. 11, pp. 1659–1667, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. G. A. Poland, I. G. Ovsyannikova, and R. M. Jacobson, “Application of pharmacogenomics to vaccines,” Pharmacogenomics, vol. 10, no. 5, pp. 837–852, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Gaucher, R. Therrien, N. Kettaf et al., “Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses,” Journal of Experimental Medicine, vol. 205, no. 13, pp. 3119–3131, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. P. G. Thomas and P. C. Doherty, “Rules to ‘prime’ by,” Nature Immunology, vol. 10, no. 1, pp. 14–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Mosca, E. Tritto, A. Muzzi et al., “Molecular and cellular signatures of human vaccine adjuvants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 30, pp. 10501–10506, 2008. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Tritto, A. Muzzi, I. Pesce et al., “The acquired immune response to the mucosal adjuvant LTK63 imprints the mouse lung with a protective signature,” Journal of Immunology, vol. 179, no. 8, pp. 5346–5357, 2007. View at Google Scholar · View at Scopus
  73. S. L. Demento, S. C. Eisenbarth, H. G. Foellmer et al., “Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy,” Vaccine, vol. 27, no. 23, pp. 3013–3021, 2009. View at Publisher · View at Google Scholar · View at Scopus
  74. H.-H. Bui, J. Botten, N. Fusseder et al., “Protein sequence database for pathogenic arenaviruses,” Immunome Research, vol. 3, no. 1, 2007. View at Publisher · View at Google Scholar · View at Scopus
  75. F. A. Murphy, “Emerging zoonoses: the challenge for public health and biodefense,” Preventive Veterinary Medicine, vol. 86, no. 3-4, pp. 216–223, 2008. View at Publisher · View at Google Scholar · View at Scopus