Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 283842, 10 pages
Research Article

Improved Method for In Vitro Secondary Amastigogenesis of Trypanosoma cruzi: Morphometrical and Molecular Analysis of Intermediate Developmental Forms

1Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, AV. IPN 2508, Col San Pedro Zacatenco, 07360 México, DF, Mexico
2Facultad de Medicina y Cirugía, Universidad Autónoma Benito Juárez de Oaxaca, 68020 Oaxaca, Mexico
3FES Iztacala, UBIMED, UNAM, 54090 Edo. de México, Mexico
4Facultad de Medicina Veterinaria y Zootecnia, UNAM, 04510 México, DF, Mexico

Received 10 June 2009; Revised 10 September 2009; Accepted 21 September 2009

Academic Editor: Luis I. Terrazas

Copyright © 2010 L. A. Hernández-Osorio et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis.