Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 329646, 7 pages
http://dx.doi.org/10.1155/2010/329646
Research Article

Evaluation of Hepcidin Isoforms in Hemodialysis Patients by a Proteomic Approach Based on SELDI-TOF MS

1Department of Medicine, University of Verona, 37134 Verona, Italy
2Nephrology and Haemodialysis Unit, Division of Nephrology, University of Verona, 37134 Verona, Italy
3Department of Medicine and Public Health, University of Verona, 37134 Verona, Italy

Received 30 July 2009; Revised 6 November 2009; Accepted 10 February 2010

Academic Editor: Kai Tang

Copyright © 2010 Natascia Campostrini et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Ganz, “Hepcidin, a key regulator of iron metabolism and mediator of anemia of inflammation,” Blood, vol. 102, no. 3, pp. 783–788, 2003. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Nemeth, M. S. Tuttle, J. Powelson et al., “Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization,” Science, vol. 306, no. 5704, pp. 2090–2093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. H. Park, E. V. Valore, A. J. Waring, and T. Ganz, “Hepcidin, a urinary antimicrobial peptide synthesized in the liver,” Journal of Biological Chemistry, vol. 276, no. 11, pp. 7806–7810, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. I. De Domenico, E. Nemeth, J. M. Nelson et al., “The hepcidin-binding site on ferroportin is evolutionarily conserved,” Cell Metabolism, vol. 8, no. 2, pp. 146–156, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Suzuki, K. Toba, K. Kato et al., “Serum hepcidin-20 is elevated during the acute phase of myocardial infarction,” Tohoku Journal of Experimental Medicine, vol. 218, no. 2, pp. 93–98, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Piperno, R. Mariani, P. Trombini, and D. Girelli, “Hepcidin modulation in human diseases: from research to clinic,” World Journal of Gastroenterology, vol. 15, no. 5, pp. 538–551, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Kiehntopf, R. Siegmund, and T. Deufel, “Use of SELDI-TOF mass spectrometry for identification of new biomarkers: potential and limitations,” Clinical Chemistry and Laboratory Medicine, vol. 45, no. 11, pp. 1435–1449, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. J. A. Bons, W. K. Wodzig, and M. P. van Dieijen-Visser, “Protein profiling as a diagnostic tool in clinical chemistry: a review,” Clinical Chemistry and Laboratory Medicine, vol. 43, no. 12, pp. 1281–1290, 2005. View at Google Scholar · View at Scopus
  9. D. W. Swinkels, D. Girelli, C. Laarakkers et al., “Advances in quantitative hepcidin measurements by time-of-flight mass spectrometry,” PLoS ONE, vol. 3, no. 7, article e2706, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Girelli, I. De Domenico, C. Bozzini et al., “Clinical, pathological, and molecular correlates in ferroportin disease: a study of two novel mutations,” Journal of Hepatology, vol. 49, no. 4, pp. 664–671, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Robach, S. Recalcati, D. Girelli et al., “Alterations of systemic and muscle iron metabolism in human subjects treated with low-dose recombinant erythropoietin,” Blood, vol. 113, no. 26, pp. 6707–6715, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Bozzini, N. Campostrini, P. Trombini et al., “Measurement of urinary hepcidin levels by SELDI-TOF-MS in HFE-hemochromatosis,” Blood Cells, Molecules, and Diseases, vol. 40, no. 3, pp. 347–352, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J. Malyszko and M. Mysliwiec, “Hepcidin in anemia and inflammation in chronic kidney disease,” Kidney and Blood Pressure Research, vol. 30, no. 1, pp. 15–30, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Hamada and M. Fukagawa, “Is hepcidin the star player in iron metabolism in chronic kidney disease,” Kidney International, vol. 75, no. 9, pp. 873–874, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Nemeth, S. Rivera, V. Gabayan et al., “IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin,” Journal of Clinical Investigation, vol. 113, no. 9, pp. 1271–1276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Valenti, D. Girelli, G. F. Valenti et al., “HFE mutations modulate the effect of iron on serum hepcidin-25 in chronic hemodialysis patients,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 8, pp. 1331–1337, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. D. R. Ashby, D. P. Gale, M. Busbridge et al., “Plasma hepcidin levels are elevated but responsive to erythropoietin therapy in renal disease,” Kidney International, vol. 75, no. 9, pp. 976–981, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. Weiss, I. Theurl, S. Eder et al., “Serum hepcidin concentration in chronic haemodialysis patients: associations and effects of dialysis, iron and erythropoietin therapy,” European Journal of Clinical Investigation, vol. 39, no. 10, pp. 883–890, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Zaritsky, B. Young, H.-J. Wang et al., “Hepcidin—a potential novel biomarker for iron status in chronic kidney disease,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 6, pp. 1051–1056, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. P. Zucchelli, A. Santoro, and G. Raggiotto, “Biofiltration in uremia: preliminary observations,” Blood Purification, vol. 2, no. 4, pp. 187–195, 1984. View at Google Scholar · View at Scopus
  21. M. L. Wratten and P. M. Ghezzi, “Hemodiafiltration with endogenous reinfusion,” Contributions to Nephrology, vol. 158, pp. 94–102, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. H. J. M. Kemna, H. Tjalsma, V. N. Podust, and D. W. Swinkels, “Mass spectrometry-based hepcidin measurements in serum and urine: analytical aspects and clinical implications,” Clinical Chemistry, vol. 53, no. 4, pp. 620–628, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Young and J. Zaritsky, “Hepcidin for clinicians,” Clinical Journal of the American Society of Nephrology, vol. 4, no. 8, pp. 1384–1387, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Tomosugi, H. Kawabata, R. Wakatabe et al., “Detection of serum hepcidin in renal failure and inflammation by using ProteinChip System,” Blood, vol. 108, no. 4, pp. 1381–1387, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. G. A. Kaysen, “The microinflammatory state in uremia: causes and potential consequences,” Journal of the American Society of Nephrology, vol. 12, no. 7, pp. 1549–1557, 2001. View at Google Scholar · View at Scopus