Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 410405, 9 pages
http://dx.doi.org/10.1155/2010/410405
Research Article

Pre-mRNA Processing Is Partially Impaired in Satellite Cell Nuclei from Aged Muscles

1Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
2Laboratorio di Biologia Cellulare, Dipartimento di Biologia Animale, University of Pavia, Via Ferrata 9a, 27100 Pavia, Italy
3CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunologie et Chimie Thérapeutiques, 15 rue R. Descartes, 67084 Strasbourg Cedex, France

Received 30 October 2009; Accepted 3 February 2010

Academic Editor: Guy M. Benian

Copyright © 2010 Manuela Malatesta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Satellite cells are responsible for the capacity of mature mammalian skeletal muscles to repair and maintain mass. During aging, skeletal muscle mass as well as the muscle strength and endurance progressively decrease, leading to a condition termed sarcopenia. The causes of sarcopenia are manifold and remain to be completely elucidated. One of them could be the remarkable decline in the efficiency of muscle regeneration; this has been associated with decreasing amounts of satellite cells, but also to alterations in their activation, proliferation, and/or differentiation. In this study, we investigated the satellite cell nuclei of biceps and quadriceps muscles from adult and old rats; morphometry and immunocytochemistry at light and electron microscopy have been combined to assess the organization of the nuclear RNP structural constituents involved in different steps of mRNA formation. We demonstrated that in satellite cells the RNA pathways undergo alterations during aging, possibly hampering their responsiveness to muscle damage.