Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 410405, 9 pages
http://dx.doi.org/10.1155/2010/410405
Research Article

Pre-mRNA Processing Is Partially Impaired in Satellite Cell Nuclei from Aged Muscles

1Dipartimento di Scienze Morfologico-Biomediche, Sezione di Anatomia e Istologia, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
2Laboratorio di Biologia Cellulare, Dipartimento di Biologia Animale, University of Pavia, Via Ferrata 9a, 27100 Pavia, Italy
3CNRS, Institut de Biologie Moléculaire et Cellulaire, Immunologie et Chimie Thérapeutiques, 15 rue R. Descartes, 67084 Strasbourg Cedex, France

Received 30 October 2009; Accepted 3 February 2010

Academic Editor: Guy M. Benian

Copyright © 2010 Manuela Malatesta et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. Lang, T. Streeper, P. Cawthon, K. Baldwin, D. R. Taaffe, and T. B. Harris, “Sarcopenia: etiology, clinical consequences, intervention, and assessment,” Osteoporosis International, pp. 1–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. J. G. Ryall, J. D. Schertzer, and G. S. Lynch, “Cellular and molecular mechanisms underlying age-related skeletal muscle wasting and weakness,” Biogerontology, vol. 9, no. 4, pp. 213–228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. L. V. Thompson, “Age-related muscle dysfunction,” Experimental Gerontology, vol. 44, no. 1-2, pp. 106–111, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. M. C. Gibson and E. Schultz, “Age-related differences in absolute numbers of skeletal muscle satellite cells,” Muscle & Nerve, vol. 6, no. 8, pp. 574–580, 1983. View at Google Scholar · View at Scopus
  5. V. Renault, E. Rolland, L. E. Thornell, V. Mouly, and G. Butler-Browne, “Distribution of satellite cells in the human vastus lateralis muscle during aging,” Experimental Gerontology, vol. 37, no. 12, pp. 1513–1514, 2002. View at Google Scholar · View at Scopus
  6. F. Kadi, N. Charifi, C. Denis, and J. Lexell, “Satellite cells and myonuclei in young and elderly women and men,” Muscle & Nerve, vol. 29, no. 1, pp. 120–127, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. A. S. Brack, H. Bildsoe, and S. M. Hughes, “Evidence that satellite cell decrement contributes to preferential decline in nuclear number from large fibres during murine age-related muscle atrophy,” Journal of Cell Science, vol. 118, no. 20, pp. 4813–4821, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. L. B. Verdijk, R. Koopman, G. Schaart, K. Meijer, H. H. C. M. Savelberg, and L. J. C. van Loon, “Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly,” American Journal of Physiology, vol. 292, no. 1, pp. E151–E157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. S. S. Jejurikar, E. A. Henkelman, P. S. Cederna, C. L. Marcelo, M. G. Urbanchek, and W. M. Kuzon Jr., “Aging increases the susceptibility of skeletal muscle derived satellite cells to apoptosis,” Experimental Gerontology, vol. 41, no. 9, pp. 828–836, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. S. E. Alway and P. M. Siu, “Nuclear apoptosis contributes to sarcopenia,” Exercise and Sport Sciences Reviews, vol. 36, no. 2, pp. 51–57, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. S. M. Roth, G. F. Martel, F. M. Ivey et al., “Skeletal muscle satellite cell populations in healthy young and older men and women,” Anatomical Record, vol. 260, no. 4, pp. 351–358, 2000. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Schafer, M. Zweyer, U. Knauf, R. R. Mundegar, and A. Wernig, “The ontogeny of soleus muscles in mdx and wild type mice,” Neuromuscular Disorders, vol. 15, no. 1, pp. 57–64, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. N. E. Brooks, M. D. Schuenke, and R. S. Hikida, “No change in skeletal muscle satellite cells in young and aging rat soleus muscle,” The Journal of Physiological Sciences, vol. 59, no. 6, pp. 465–471, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. E. Schultz and B. H. Lipton, “Skeletal muscle satellite cells: changes in proliferation potential as a function of age,” Mechanisms of Ageing and Development, vol. 20, no. 4, pp. 377–383, 1982. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Machida and M. Narusawa, “The roles of satellite cells and hematopoietic stem cells in impaired regeneration of skeletal muscle in old rats,” Annals of the New York Academy of Sciences, vol. 1067, no. 1, pp. 349–353, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. E. Meshorer and H. Soreq, “Pre-mRNA splicing modulations in senescence,” Aging Cell, vol. 1, no. 1, pp. 10–16, 2002. View at Google Scholar · View at Scopus
  17. M. Malatesta, C. Bertoni-Freddari, P. Fattoretti, C. Caporaloni, S. Fakan, and G. Gazzanelli, “Altered RNA structural constituents in aging and vitamin E deficiency,” Mechanisms of Ageing and Development, vol. 124, no. 2, pp. 175–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. M. Malatesta, C. Bertoni-Freddari, P. Fattoretti, B. Baldelli, S. Fakan, and G. Gazzanelli, “Aging and vitamin E deficiency are responsible for altered RNA pathways,” Annals of the New York Academy of Sciences, vol. 1019, pp. 379–382, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Malatesta, B. Baldelli, S. Battistelli, P. Fattoretti, and C. Bertoni-Freddari, “Aging affects the distribution of the circadian CLOCK protein in rat hepatocytes,” Microscopy Research and Technique, vol. 68, no. 1, pp. 45–50, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Malatesta, P. Fattoretti, B. Baldelli, S. Battistelli, M. Balietti, and C. Bertoni-Freddari, “Effects of ageing on the fine distribution of the circadian CLOCK protein in reticular formation neurons,” Histochemistry and Cell Biology, vol. 127, no. 6, pp. 641–647, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Malatesta, M. Biggiogera, B. Cisterna, M. Balietti, C. Bertoni-Freddari, and P. Fattoretti, “Perichromatin fibrils accumulation in hepatocyte nuclei reveals alterations of pre-mRNA processing during ageing,” DNA and Cell Biology, vol. 29, no. 2, pp. 49–57, 2010. View at Google Scholar
  22. S. Fakan, “Ultrastructural cytochemical analyses of nuclear functional architecture,” European Journal of Histochemistry, vol. 48, no. 1, pp. 5–14, 2004. View at Google Scholar · View at Scopus
  23. M. Biggiogera, B. Cisterna, A. Spedito, L. Vecchio, and M. Malatesta, “Perichromatin fibrils as early markers of transcriptional alterations,” Differentiation, vol. 76, no. 1, pp. 57–65, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. D. Bogolyubov, I. Stepanova, and V. Parfenov, “Universal nuclear domains of somatic and germ cells: some lessons from oocyte interchromatin granule cluster and Cajal body structure and molecular composition,” BioEssays, vol. 31, no. 4, pp. 400–409, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Malatesta, F. Perdoni, S. Muller, C. Zancanaro, and C. Pellicciari, “Nuclei of aged myofibres undergo structural and functional changes suggesting impairment in RNA processing,” European Journal of Histochemistry, vol. 53, no. 2, pp. 97–106, 2009. View at Google Scholar · View at Scopus
  26. L. Larsson, B. Sjodin, and J. Karlsson, “Histochemical and biochemical changes in human skeletal muscle with age in sedentary males, age 22–65 yrs,” Acta Physiologica Scandinavica, vol. 103, no. 1, pp. 31–39, 1978. View at Google Scholar · View at Scopus
  27. J. Lexell, “Human aging, muscle mass, and fiber type composition,” The Journals of Gerontology. Series A, vol. 50, pp. 11–16, 1995. View at Google Scholar · View at Scopus
  28. C. D. Shorey, L. A. Manning, and A. V. Everitt, “Morphometrical analysis of skeletal muscle fibre ageing and the effect of hypophysectomy and food restriction in the rat,” Gerontology, vol. 34, no. 3, pp. 97–109, 1988. View at Google Scholar · View at Scopus
  29. J. Covault, J. P. Merlie, C. Goridis, and J. R. Sanes, “Molecular forms of N-CAM and its RNA in developing and denervated skeletal muscle,” The Journal of Cell Biology, vol. 102, no. 3, pp. 731–739, 1986. View at Google Scholar · View at Scopus
  30. P. S. Testillano, E. Gorab, and M. C. Risueno, “A new approach to map transcription sites at the ultrastructural level,” Journal of Histochemistry and Cytochemistry, vol. 42, no. 1, pp. 1–10, 1994. View at Google Scholar · View at Scopus
  31. M. Malatesta, F. Perdoni, S. Battistelli, S. Muller, and C. Zancanaro, “The cell nuclei of skeletal muscle cells are transcriptionally active in hibernating edible dormice,” BMC Cell Biology, vol. 10, article 19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. K. L. Veraldi, G. K. Arhin, K. Martincic, L.-H. Chung-Ganster, J. Wilusz, and C. Milcarek, “hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells,” Molecular and Cellular Biology, vol. 21, no. 4, pp. 1228–1238, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Bernhard, “A new staining procedure for electron microscopical cytology,” Journal of Ultrasructure Research, vol. 27, no. 3-4, pp. 250–265, 1969. View at Google Scholar · View at Scopus
  34. N. E. Brooks, M. D. Schuenke, and R. S. Hikida, “Ageing influences myonuclear domain size differently in fast and slow skeletal muscle of rats,” Acta Physiologica, vol. 197, no. 1, pp. 55–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Zancanaro, R. Mariotti, F. Perdoni, E. Nicolato, and M. Malatesta, “Physical training is associated with changes in nuclear magnetic resonance and morphometrical parameters of the skeletal muscle in senescent mice,” European Journal of Histochemistry, vol. 51, no. 4, pp. 305–309, 2007. View at Google Scholar · View at Scopus
  36. K. Gundersen and J. C. Bruusgaard, “Nuclear domains during muscle atrophy: nuclei lost or paradigm lost?” Journal of Physiology, vol. 586, no. 11, pp. 2675–2681, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. H. G. Schwarzacher and F. Wachtler, “The nucleolus,” Anatomy and Embryology, vol. 188, no. 6, pp. 515–536, 1993. View at Google Scholar · View at Scopus
  38. R. Lührmann, B. Kastner, and M. Bach, “Structure of spliceosomal snRNPs and their role in pre-mRNA splicing,” Biochimica et Biophysica Acta, vol. 1087, no. 3, pp. 265–292, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Puvion and F. Puvion-Dutilleul, “Ultrastructure of the nucleus in relation to transcription and splicing: roles of perichromatin fibrils and interchromatin granules,” Experimental Cell Research, vol. 229, no. 2, pp. 217–225, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Puvion-Dutilleul and E. Puvion, “Relationship between chromatin and perichromatin granules in cadmium-treated isolated hepatocytes,” Journal of Ultrastructure Research, vol. 74, no. 3, pp. 341–350, 1981. View at Google Scholar · View at Scopus
  41. C. Zancanaro, M. Malatesta, P. Vogel, F. Osculati, and S. Fakan, “Ultrastructural and morphometrical analyses of the brown adipocyte nucleus in a hibernating dormouse,” Biology of the Cell, vol. 79, no. 1, pp. 55–61, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. G. Pujol, H. Soderqvist, and A. Radu, “Age-associated reduction of nuclear protein import in human fibroblasts,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 354–358, 2002. View at Publisher · View at Google Scholar · View at Scopus
  43. C. W. Jameson, “Towards a unified and interdiciplinary model of ageing,” Medical Hypotheses, vol. 63, no. 1, pp. 83–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. A. Hallen, “Accumulation of insoluble protein and aging,” Biogerontology, vol. 3, no. 5, pp. 307–315, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. J. H. Kim, H. E. Choy, K. H. Nam, and S. C. Park, “Transglutaminase-mediated crosslinking of specific core histone subunits and cellular senescence,” Annals of the New York Academy of Sciences, vol. 928, pp. 65–70, 2001. View at Google Scholar · View at Scopus
  46. S. Machida and F. W. Booth, “Increased nuclear proteins in muscle satellite cells in aged animals as compared to young growing animals,” Experimental Gerontology, vol. 39, no. 10, pp. 1521–1525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Fulle, F. Protasi, G. Di Tano et al., “The contribution of reactive oxygen species to sarcopenia and muscle ageing,” Experimental Gerontology, vol. 39, no. 1, pp. 17–24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. S. Fulle, S. Di Donna, C. Puglielli et al., “Age-dependent imbalance of the antioxidative system in human satellite cells,” Experimental Gerontology, vol. 40, no. 3, pp. 189–197, 2005. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Attaix, L. Mosoni, D. Dardevet, L. Combaret, P. P. Mirand, and J. Grizard, “Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods,” The International Journal of Biochemistry & Cell Biology, vol. 37, no. 10, pp. 1962–1973, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Combaret, D. Dardevet, D. Béchet, D. Taillandier, L. Mosoni, and D. Attaix, “Skeletal muscle proteolysis in aging,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 12, no. 1, pp. 37–41, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Cardani, E. Mancinelli, G. Rotondo, V. Sansone, and G. Meola, “Muscleblind-like protein 1 nuclear sequestration is a molecular pathology marker of DM1 and DM2,” European Journal of Histochemistry, vol. 50, no. 3, pp. 177–182, 2006. View at Google Scholar · View at Scopus
  52. T. M. Wheeler and C. A. Thornton, “Myotonic dystrophy: RNA-mediated muscle disease,” Current Opinion in Neurology, vol. 20, no. 5, pp. 572–576, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Perdoni, M. Malatesta, R. Cardani et al., “RNA/MBNL1-containing foci in myoblast nuclei from patients affected by myotonic dystrophy type 2: an immunocytochemical study,” European Journal of Histochemistry, vol. 53, no. 3, pp. 151–158, 2009. View at Google Scholar · View at Scopus