Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 580531, 4 pages
http://dx.doi.org/10.1155/2010/580531
Research Article

Improvement of Radiation-Mediated Immunosuppression of Human NSCLC Tumour Xenografts in a Nude Rat Model

OncoRay—Center for Radiation Research in Oncology, Medical Faculty Carl Gustav Carus, TU Dresden, Fetscherstraße 74, P.O. Box 86, 01307 Dresden, Germany

Received 25 September 2009; Revised 4 November 2009; Accepted 8 December 2009

Academic Editor: Kapil Mehta

Copyright © 2010 Sergey V. Tokalov et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Jemal, R. Siegel, E. Ward et al., “Cancer statistics, 2008,” CA: Cancer Journal for Clinicians, vol. 58, no. 2, pp. 71–96, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Kerbel, “Human tumor xenografts as predictive preclinical models for anticancer drug activity in humans: better than commonly perceived-but they can be improved,” Cancer Biology & Therapy, vol. 2, no. 4, supplement 1, pp. S134–S139, 2003. View at Google Scholar · View at Scopus
  3. T. Troiani, C. Schettino, E. Martinelli, F. Morgillo, G. Tortora, and F. Ciardiello, “The use of xenograft models for the selection of cancer treatments with the EGFR as an example,” Critical Reviews in Oncology/Hematology, vol. 65, no. 3, pp. 200–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Zips, K. Le, A. Yaromina et al., “Triple angiokinase inhibition, tumour hypoxia and radiation response of FaDu human squamous cell carcinomas,” Radiotherapy and Oncology, vol. 92, no. 3, pp. 405–410, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. T. H. March, P. G. Marron-Terada, and S. A. Belinsky, “Refinement of an orthotopic lung cancer model in the nude rat,” Veterinary Pathology, vol. 38, no. 5, pp. 483–490, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Grüner, S. Schindler, G. Wolf et al., “Pilotstudie zur Etablierung eines Nacktratten-Tumor-Xenograftmodells unter Verwendung zweier humaner Tumorzelllinien,” in Experimentelle Strahlentherapie und Klinische Strahlenbiologie, M. Baumann, Ed., vol. 16, pp. 93–96, Technische Universität Dresden, Dresden, Germany, 2007. View at Google Scholar
  7. M. Mirus, S. V. Tokalov, A. Koch et al., “Veränderung der Angiogenese in Xenografttumoren durch Cotransplantation von Endothelzellen: Wachstumskurven und Bildgebung,” in Experimentalle Strahlentherapie und Klinische Strahlenbiologie, M. Baumann, Ed., vol. 18, pp. 31–32, Technische Universität Dresden, Dresden, Germany, 2009. View at Google Scholar
  8. S. V. Tokalov, S. Schindler, A. M. Abramyk et al., “Establishment of NSCLC Xenografts with different vasculogenesis,” Cellular Oncology, vol. 30, no. 2, pp. 135–136, 2008. View at Google Scholar
  9. S. Tokalov, A. Glauert, M. Mirus et al., “Formation of tumour xenografts with determined vascularisation in a nude rat model,” European Journal of Cell Biology, vol. 88, p. 54, 2009. View at Google Scholar
  10. G. Wolf and N. Abolmaali, “Imaging tumour-bearing animals using clinical scanners,” International Journal of Radiation Biology, vol. 85, no. 9, pp. 752–762, 2009. View at Publisher · View at Google Scholar · View at Scopus