Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 612482, 7 pages
http://dx.doi.org/10.1155/2010/612482
Review Article

Roles of Titin in the Structure and Elasticity of the Sarcomere

Institute for Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK

Received 16 February 2010; Accepted 13 May 2010

Academic Editor: Aikaterini Kontrogianni-Konstantopoulos

Copyright © 2010 Larissa Tskhovrebova and John Trinick. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Y. Boateng and P. H. Goldspink, “Assembly and maintenance of the sarcomere night and day,” Cardiovascular Research, vol. 77, no. 4, pp. 667–675, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Ehler and M. Gautel, “The sarcomere and sarcomerogenesis,” Advances in Experimental Medicine and Biology, vol. 642, pp. 1–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. S. Willis, J. C. Schisler, A. L. Portbury, and C. Patterson, “Build it up-tear it down: protein quality control in the cardiac sarcomere,” Cardiovascular Research, vol. 81, no. 3, pp. 439–448, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. W. G. Pyle and R. J. Solaro, “At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function,” Circulation Research, vol. 94, no. 3, pp. 296–305, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. J. Solaro and P. P. De Tombe, “Review focus series: sarcomeric proteins as key elements in integrated control of cardiac function,” Cardiovascular Research, vol. 77, no. 4, pp. 616–618, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. L. Tskhovrebova and J. Trinick, “Titin: properties and family relationships,” Nature Reviews Molecular Cell Biology, vol. 4, no. 9, pp. 679–689, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Granzier and S. Labeit, “Structure-function relations of the giant elastic protein titin in striated and smooth muscle cells,” Muscle and Nerve, vol. 36, no. 6, pp. 740–755, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. W. A. Linke, “Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction,” Cardiovascular Research, vol. 77, no. 4, pp. 637–648, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. M. L. Greaser, “Stressing the giant: a new approach to understanding dilated cardiomyopathy,” Journal of Molecular and Cellular Cardiology, vol. 47, no. 3, pp. 347–349, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Kontrogianni-Konstantopoulos, M. A. Ackermann, A. L. Bowman, S. V. Yap, and R. J. Bloch, “Muscle giants: molecular scaffolds in sarcomerogenesis,” Physiological Reviews, vol. 89, no. 4, pp. 1217–1267, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. K. Maruyama, T. Yoshioka, and H. Higuchi, “Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy,” Journal of Cell Biology, vol. 101, no. 6, pp. 2167–2172, 1985. View at Google Scholar · View at Scopus
  12. D. O. Furst, M. Osborn, R. Nave, and K. Weber, “The organization of titin filaments in the half-sarcomere revealed by monoclonal antibodies in immunoelectron microscopy: a map of ten nonrepetitive epitopes starting at the Z line extends close to the M line,” Journal of Cell Biology, vol. 106, no. 5, pp. 1563–1572, 1988. View at Google Scholar · View at Scopus
  13. D. O. Fürst, R. Nave, M. Osborn, and K. Weber, “Repetitive titin epitopes with a 42 nm spacing coincide in relative position with known A band striations also identified by major myosin-associated proteins. An immunoelectron-microscopical study on myofibrils,” Journal of cell science, vol. 94, pp. 119–125, 1989. View at Google Scholar · View at Scopus
  14. M.-L. Bang, T. Centner, F. Fornoff et al., “The complete gene sequence of titin, expression of an unusual 700-kDa titin isoform, and its interaction with obscurin identify a novel Z-line to I-band linking system,” Circulation Research, vol. 89, no. 11, pp. 1065–1072, 2001. View at Google Scholar · View at Scopus
  15. J. Trinick, P. Knight, and A. Whiting, “Purification and properties of native titin,” Journal of Molecular Biology, vol. 180, no. 2, pp. 331–356, 1984. View at Google Scholar · View at Scopus
  16. K. Wang, R. Ramirez-Mitchell, and D. Palter, “Titin is an extraordinarily long, flexible, and slender myofibrillar protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3685–3689, 1984. View at Google Scholar · View at Scopus
  17. R. Nave, D. O. Furst, and K. Weber, “Visualization of the polarity of isolated titin molecules: a single globular head on a long thin rod as the M band anchoring domain?” Journal of Cell Biology, vol. 109, no. 5, pp. 2177–2187, 1989. View at Google Scholar · View at Scopus
  18. M. Sonoda, S. Kimura, H. Moriya, Y. Shimada, and K. Maruyama, “Molecular shape of α-Connectin, an elastic filamentous protein of skeletal muscle,” Proceedings of the Japan Academy. Series B, vol. 66, no. 10, pp. 213–216, 1990. View at Google Scholar
  19. S. Labeit, M. Gautel, A. Lakey, and J. Trinick, “Towards a molecular understanding of titin,” EMBO Journal, vol. 11, no. 5, pp. 1711–1716, 1992. View at Google Scholar · View at Scopus
  20. S. Labeit and B. Kolmerer, “Titins: giant proteins in charge of muscle ultrastructure and elasticity,” Science, vol. 270, no. 5234, pp. 293–296, 1995. View at Google Scholar · View at Scopus
  21. S. Labeit, D. P. Barlow, M. Gautel et al., “A regular pattern of two types of 100-residue motif in the sequence of titin,” Nature, vol. 345, no. 6272, pp. 273–276, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Gautel, “The super-repeats of titin/connectin and their interactions: glimpses at sarcomeric assembly,” Advances in Biophysics, vol. 33, pp. 27–37, 1996. View at Publisher · View at Google Scholar · View at Scopus
  23. C. C. Witt, N. Olivieri, T. Centner et al., “A survey of the primary structure and the interspecies conservation of I-band titin's elastic elements in vertebrates,” Journal of Structural Biology, vol. 122, no. 1-2, pp. 206–215, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. A. Freiburg and M. Gautel, “A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy,” European Journal of Biochemistry, vol. 235, no. 1-2, pp. 317–323, 1996. View at Google Scholar · View at Scopus
  25. S. Improta, J. K. Krueger, M. Gautel et al., “The assembly of immunoglobulin-like modules in titin: implications for muscle elasticity,” Journal of Molecular Biology, vol. 284, no. 3, pp. 761–777, 1998. View at Publisher · View at Google Scholar · View at Scopus
  26. C. Muhle-Goll, A. Pastore, and M. Nilges, “The three-dimensional structure of a type I module from titin: a prototype of intracellular fibronectin type III domains,” Structure, vol. 6, no. 10, pp. 1291–1302, 1998. View at Google Scholar · View at Scopus
  27. P. Amodeo, F. Fraternali, A. M. Lesk, and A. Pastore, “Modularity and homology: modelling of the titin type I modules and their interfaces,” Journal of Molecular Biology, vol. 311, no. 2, pp. 283–296, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Mrosek, D. Labeit, S. Witt et al., “Molecular determinants for the recruitment of the ubiquitin-ligase MuRF-1 onto M-line titin,” FASEB Journal, vol. 21, no. 7, pp. 1383–1392, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Müller, S. Lange, M. Gautel, and M. Wilmanns, “Rigid conformation of an immunoglobulin domain tandem repeat in the A-band of the elastic muscle protein titin,” Journal of Molecular Biology, vol. 371, no. 2, pp. 469–480, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Von Castelmur, M. Marino, D. I. Svergun et al., “A regular pattern of Ig super-motifs defines segmental flexibility as the elastic mechanism of the titin chain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1186–1191, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Tskhovrebova and J. Trinick, “Flexibility and extensibility in the titin molecule: analysis of electron microscope data,” Journal of Molecular Biology, vol. 310, no. 4, pp. 755–771, 2001. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Marino, P. Zou, D. Svergun et al., “The Ig Doublet Z1Z2: a model system for the hybrid analysis of conformational dynamics in Ig tandems from titin,” Structure, vol. 14, no. 9, pp. 1437–1447, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Muhle-Goll, M. Habeck, O. Cazorla, M. Nilges, S. Labeit, and H. Granzier, “Structural and functional studies of titin's fn3 modules reveal conserved surface patterns and binding to myosin S1–a possible role in the Frank-Starling mechanism of the heart,” Journal of Molecular Biology, vol. 313, no. 2, pp. 431–447, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Squire, M. Roessle, and C. Knupp, “New X-ray diffraction observations on vertebrate muscle: organisation of C-protein (MyBP-C) and troponin and evidence for unknown structures in the vertebrate A-band,” Journal of Molecular Biology, vol. 343, no. 5, pp. 1345–1363, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Maruyama, T. Yoshioka, and H. Higuchi, “Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy,” Journal of Cell Biology, vol. 101, no. 6, pp. 2167–2172, 1985. View at Google Scholar · View at Scopus
  36. K. Wang, “Sarcomere-associated cytoskeletal lattices in striated muscle. Review and hypothesis,” Cell and Muscle Motility, vol. 6, pp. 315–369, 1985. View at Google Scholar
  37. R. Horrowits and R. J. Podolsky, “The positional stability of thick filaments in activated skeletal muscle depends on sarcomere length: evidence for the role of titin filaments,” Journal of Cell Biology, vol. 105, no. 5, pp. 2217–2223, 1987. View at Google Scholar · View at Scopus
  38. A. Soteriou, A. Clarke, S. Martin, and J. Trinick, “Titin folding energy and elasticity,” Proceedings of the Royal Society B, vol. 254, no. 1340, pp. 83–86, 1993. View at Publisher · View at Google Scholar · View at Scopus
  39. H. L. Granzier and T. C. Irving, “Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments,” Biophysical Journal, vol. 68, no. 3, pp. 1027–1044, 1995. View at Google Scholar · View at Scopus
  40. M. Gautel and D. Goulding, “A molecular map of titin/connectin elasticity reveals two different mechanisms acting in series,” FEBS Letters, vol. 385, no. 1-2, pp. 11–14, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Trombitás, M. Greaser, S. Labeit et al., “Titin extensibility in situ: entropic elasticity of permanently folded and permanently unfolded molecular segments,” Journal of Cell Biology, vol. 140, no. 4, pp. 853–859, 1998. View at Publisher · View at Google Scholar · View at Scopus
  42. K. Trombitás, A. Redkar, T. Centner, Y. Wu, S. Labeit, and H. Granzier, “Extensibility of isoforms of cardiac titin: variation in contour length of molecular subsegments provides a basis for cellular passive stiffness diversity,” Biophysical Journal, vol. 79, no. 6, pp. 3226–3234, 2000. View at Google Scholar · View at Scopus
  43. H. Li, W. A. Linke, A. F. Oberhauser et al., “Reverse engineering of the giant muscle protein titin,” Nature, vol. 418, no. 6901, pp. 998–1002, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. J. A. Trinick, “End filaments: a new structural element of vertebrate skeletal muscle thick filaments,” Journal of Molecular Biology, vol. 151, no. 2, pp. 309–314, 1981. View at Google Scholar · View at Scopus
  45. T. Funatsu, E. Kono, H. Higuchi et al., “Elastic filaments in situ in cardiac muscle: deep-etch replica analysis in combination with selective removal of actin and myosin filaments,” Journal of Cell Biology, vol. 120, no. 3, pp. 711–724, 1993. View at Publisher · View at Google Scholar · View at Scopus
  46. P. M. Bennett, T. E. Hodkin, and C. Hawkins, “Evidence that the tandem ig domains near the end of the muscle thick filament form an inelastic part of the I-band titin,” Journal of Structural Biology, vol. 120, no. 1, pp. 93–104, 1997. View at Publisher · View at Google Scholar · View at Scopus
  47. A. D. Liversage, D. Holmes, P. J. Knight, L. Tskhovrebova, and J. Trinick, “Titin and the sarcomere symmetry paradox,” Journal of Molecular Biology, vol. 305, no. 3, pp. 401–409, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Houmeida, A. Baron, J. Keen et al., “Evidence for the oligomeric state of ‘elastic’ titin in muscle sarcomeres,” Journal of Molecular Biology, vol. 384, no. 2, pp. 299–312, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. M. S. Z. Kellermayer, C. Bustamante, and H. L. Granzier, “Mechanics and structure of titin oligomers explored with atomic force microscopy,” Biochimica et Biophysica Acta, vol. 1604, no. 2, pp. 105–114, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. L. Tskhovrebova and J. Trinick, “Direct visualization of extensibility in isolated titin molecules,” Journal of Molecular Biology, vol. 265, no. 2, pp. 100–106, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Higuchi, Y. Nakauchi, K. Maruyama, and S. Fujime, “Characterization of β-connectin (titin 2) from striated mucle by dynamic light scattering,” Biophysical Journal, vol. 65, no. 5, pp. 1906–1915, 1993. View at Google Scholar
  52. E. Di Cola, T. A. Waigh, J. Trinick et al., “Persistence length of titin from rabbit skeletal muscles measured with scattering and microrheology techniques,” Biophysical Journal, vol. 88, no. 6, pp. 4095–4106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. M. S. Z. Kellermayer, S. B. Smith, H. L. Granzier, and C. Bustamante, “Folding-unfolding transitions in single titin molecules characterized with laser tweezers,” Science, vol. 276, no. 5315, pp. 1112–1116, 1997. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Rief, M. Gautel, F. Oesterhelt, J. M. Fernandez, and H. E. Gaub, “Reversible unfolding of individual titin immunoglobulin domains by AFM,” Science, vol. 276, no. 5315, pp. 1109–1112, 1997. View at Publisher · View at Google Scholar · View at Scopus
  55. L. Tskhovrebova, J. Trinick, J. A. Sleep, and R. M. Simmons, “Elasticity and unfolding of single molecules of the giant muscle protein titin,” Nature, vol. 387, no. 6630, pp. 308–312, 1997. View at Publisher · View at Google Scholar · View at Scopus
  56. A. Yu. Grosberg and A. R. Khokhlov, “Statistical Physics of Macromolecules, AIP Press, New York, NY, USA, 2004.
  57. M. Marino, D. I. Svergun, L. Kreplak et al., “Poly-Ig tandems from I-band titin share extended domain arrangements irrespective of the distinct features of their modular constituents,” Journal of Muscle Research and Cell Motility, vol. 26, no. 6–8, pp. 355–365, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. P. Zou, N. Pinotsis, S. Lange et al., “Palindromic assembly of the giant muscle protein titin in the sarcomeric Z-disk,” Nature, vol. 439, no. 7073, pp. 229–233, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. W. A. Linke, M. R. Stockmeier, M. Ivemeyer, H. Hosser, and P. Mundel, “Characterizing titin's I-band Ig domain region as an entropic spring,” Journal of Cell Science, vol. 111, no. 11, pp. 1567–1574, 1998. View at Google Scholar · View at Scopus
  60. J. C. Wang, M. S. Turner, G. Agarwal et al., “Micromechanics of isolated sickle cell hemoglobin fibers: bending moduli and persistence lengths,” Journal of Molecular Biology, vol. 315, no. 4, pp. 601–612, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. P. K. Luther, P. M. G. Munro, and J. M. Squire, “Three-dimensional structure of the vertebrate muscle A-band. III. M-region structure and myosin filament symmetry,” Journal of Molecular Biology, vol. 151, no. 4, pp. 703–730, 1981. View at Google Scholar · View at Scopus
  62. M. C. Maw and A. J. Rowe, “Fraying of a-filaments into three subfilaments,” Nature, vol. 286, no. 5771, pp. 412–414, 1980. View at Publisher · View at Google Scholar · View at Scopus
  63. R. W. Kensler and M. Stewart, “Frog skeletal muscle thick filaments are three-stranded,” Journal of Cell Biology, vol. 96, no. 6, pp. 1797–1802, 1983. View at Google Scholar · View at Scopus
  64. G. G. Knappeis and F. Carlsen, “The ultrastructure of the M line in skeletal muscle,” Journal of Cell Biology, vol. 38, no. 1, pp. 202–211, 1968. View at Google Scholar · View at Scopus
  65. R. Tatsumi, K. Maeda, A. Hattori, and K. Takahashi, “Calcium binding to an elastic portion of connectin/titin filaments,” Journal of Muscle Research and Cell Motility, vol. 22, no. 2, pp. 149–162, 2001. View at Publisher · View at Google Scholar · View at Scopus
  66. D. Labeit, K. Watanabe, C. Witt et al., “Calcium-dependent molecular spring elements in the giant protein titin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 23, pp. 13716–13721, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Traeger, J. M. Mackenzie Jr., H. F. Epstein, and M. A. Goldstein, “Transition in the thin-filament arrangement in rat skeletal muscle,” Journal of Muscle Research and Cell Motility, vol. 4, no. 3, pp. 353–366, 1983. View at Google Scholar · View at Scopus
  68. C. Knupp, P. K. Luther, and J. M. Squire, “Titin organisation and the 3D architecture of the vertebrate-striated muscle I-band,” Journal of Molecular Biology, vol. 322, no. 4, pp. 731–739, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Granzier, M. Radke, J. Royal et al., “Functional genomics of chicken, mouse, and human titin supports splice diversity as an important mechanism for regulating biomechanics of striated muscle,” American Journal of Physiology, vol. 293, no. 2, pp. R557–R567, 2007. View at Publisher · View at Google Scholar · View at Scopus