Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 616358, 9 pages
http://dx.doi.org/10.1155/2010/616358
Research Article

Stability of Ranked Gene Lists in Large Microarray Analysis Studies

1Faculty of Health Sciences, Research Institute, University of Maribor, Zitna ulica 15, 2000 Maribor, Slovenia
2Laboratory for System Design, Faculty of Electrical Engineering and Computer Science, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia

Received 28 January 2010; Accepted 17 May 2010

Academic Editor: Nick Grishin

Copyright © 2010 Gregor Stiglic and Peter Kokol. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Mook, L. J. Van't Veer, E. J. T. Rutgers, M. J. Piccart-Gebhart, and F. Cardoso, “Individualization of therapy using mammaprint: from development to the MINDACT trial,” Cancer Genomics & Proteomics, vol. 4, no. 3, pp. 147–155, 2007. View at Google Scholar · View at Scopus
  2. T. Li, C. Zhang, and M. Ogihara, “A comparative study of feature selection and multiclass classfication methods for tissue classification based on gene expression,” Bioinformatics, vol. 20, no. 15, pp. 2429–2437, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. T. R. Golub, D. K. Slonim, P. Tamayo et al., “Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,” Science, vol. 286, no. 5439, pp. 531–537, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. P. J. Park, M. Pagano, and M. Bonetti, “A nonparametric scoring algorithm for identifying informative genes from microarray data,” Pacific Symposium on Biocomputing, pp. 52–63, 2001. View at Google Scholar · View at Scopus
  5. E. P. Xing, M. I. Jordan, and R. M. Karp, “Feature selection for high-dimensional genomic microarray data,” in Proceedings of the 18th International Conference on Machine Learning, pp. 601–608, 2001.
  6. L. Xu, A. C. Tan, R. L. Winslow, and D. Geman, “Merging microarray data from separate breast cancer studies provides a robust prognostic test,” BMC Bioinformatics, vol. 9, article 125, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Ma, “Empirical study of supervised gene screening,” BMC Bioinformatics, vol. 7, article 537, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. X. Qiu, Y. Xiao, A. Gordon, and A. Yakovlev, “Assessing stability of gene selection in microarray data analysis,” BMC Bioinformatics, vol. 7, no. 1, article 50, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Ein-Dor, O. Zuk, and E. Domany, “Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 5923–5928, 2006. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Bar-Ilan, M. Mat-Hassan, and M. Levene, “Methods for comparing rankings of search engine results,” Computer Networks, vol. 50, no. 10, pp. 1448–1463, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. R. Fagin, R. Kumar, and D. Sivakumar, “Comparing top k lists,” in Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA '03), pp. 28–36, Baltimore, Md, USA, 2003. View at Scopus
  12. T. Barrett, D. B. Troup, S. E. Wilhite et al., “NCBI GEO: mining tens of millions of expression profiles-database and tools update,” Nucleic Acids Research, vol. 35, no. 1, pp. D760–D765, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann Series in Data Management Systems, Morgan Kaufmann, San Mateo, Calif, USA, 2nd edition, 2005.
  14. C. Shannon and W. Weaver, Mathematical Theory of Communication, University of Illinois Press, Urbana, Ill, USA, 2002.
  15. J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, no. 1, pp. 81–106, 1986. View at Publisher · View at Google Scholar · View at Scopus
  16. U. M. Fayyad and K. B. Irani, “On the handling of continuous-valued attributes in decision tree generation,” Machine Learning, vol. 8, no. 1, pp. 87–102, 1992. View at Publisher · View at Google Scholar · View at Scopus
  17. K. Kira and L. A. Rendell, “A practical approach to feature selection,” in Proceedings of the 9th International Workshop on Machine learning, pp. 249–256, San Mateo, Calif, USA, 1992.
  18. I. Kononenko, “Estimating attributes: analysis and extensions of relief,” in Proceedings of the European Conference on Machine Learning, pp. 171–181, Catania, Italy, 1994.
  19. M. R. Sikonja and I. Kononenko, “An adaptation of relief for attribute estimation in regression,” in Proceedings of the 4th International Conference on Machine Learning (ICML '97), pp. 296–304, Corvalis, Ore, USA, 1997.
  20. I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, “Gene selection for cancer classification using support vector machines,” Machine Learning, vol. 46, no. 1–3, pp. 389–422, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. C.-H. Yeang, S. Ramaswamy, P. Tamayo et al., “Molecular classification of multiple tumor types,” Bioinformatics, vol. 17,supplement 1, pp. S316–S322, 2001. View at Google Scholar · View at Scopus
  22. V. N. Vapnik, The Nature of Statistical Learning Theory, Information Science and Statistics, Springer, London, UK, 1999.
  23. J. Platt, “Sequential minimal optimization: a fast algorithm for training support vector machines,” in Advances in Kernel Methods—Support Vector Learning, B. Scholkopf, J. C. Burges, and A. J. Smola, Eds., pp. 185–208, MIT Press, Cambridge, Mass, USA, 1999. View at Google Scholar
  24. L. J. Van't Veer, H. Dai, M. J. Van de Vijver et al., “Gene expression profiling predicts clinical outcome of breast cancer,” Nature, vol. 415, no. 6871, pp. 530–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Ambroise and G. J. McLachlan, “Selection bias in gene extraction on the basis of microarray gene-expression data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6562–6566, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Simon, M. D. Radmacher, K. Dobbin, and L. M. McShane, “Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification,” Journal of the National Cancer Institute, vol. 95, no. 1, pp. 14–18, 2003. View at Google Scholar · View at Scopus
  27. D. Hardin, I. Tsamardinos, and C. F. Aliferis, “A theoretical characterization of linear SVM-based feature selection,” in Proceedings of the 21ST International Conference on Machine Learning (ICML '04), pp. 377–384, ACM, Alberta, Canada, July 2004. View at Scopus
  28. R. Simon, “Development and evaluation of therapeutically relevant predictive classifiers using gene expression profiling,” Journal of the National Cancer Institute, vol. 98, no. 17, pp. 1169–1171, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Subramanian, P. Tamayo, V. K. Mootha et al., “Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 43, pp. 15545–15550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. G. Stiglic, M. Bajgot, and P. Kokol, “Gene set enrichment meta-learning analysis: next- generation sequencing versus microarrays,” BMC Bioinformatics, vol. 11, article 176, 2010. View at Publisher · View at Google Scholar · View at Scopus