Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 641025, 9 pages
http://dx.doi.org/10.1155/2010/641025
Review Article

Thrombin Inhibitors from Different Animals

1Laboratory of Pathophysiology, Butantan Institute, Avenue Vital Brazil 1500, 05503-900 São Paulo, SP, Brazil
2Biotechnology Inter Units, ICB-USP, Avenue Prof. Lineu Prestes 1730, 05508-900 São Paulo, SP, Brazil
3Department of Biochemistry, Federal University of São Paulo (UNIFESP), Rua 3 de Maio 100, 04044-020 São Paulo, SP, Brazil

Received 24 March 2010; Revised 16 June 2010; Accepted 2 August 2010

Academic Editor: Saulius Butenas

Copyright © 2010 A. M. Tanaka-Azevedo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Fenton II, M. J. Fasco, and A. B. Stackrow, “Human thrombins. Production, evaluation, and properties of α thrombin,” Journal of Biological Chemistry, vol. 252, no. 11, pp. 3587–3598, 1977. View at Google Scholar · View at Scopus
  2. M. T. Stubbs and W. Bode, “The clot thickens: clues provided by thrombin structure,” Trends in Biochemical Sciences, vol. 20, no. 1, pp. 23–28, 1995. View at Publisher · View at Google Scholar · View at Scopus
  3. M.-C. Guillin, A. Bezeaud, M.-C. Bouton, and M. Jandrot-Perrus, “Thrombin specificity,” Thrombosis and Haemostasis, vol. 74, no. 1, pp. 129–133, 1995. View at Google Scholar · View at Scopus
  4. K. G. Mann, “Biochemistry and physiology of blood coagulation,” Thrombosis and Haemostasis, vol. 82, no. 2, pp. 165–174, 1999. View at Google Scholar · View at Scopus
  5. B. Furie and B. C. Furie, “Molecular and cellular biology of blood coagulation,” New England Journal of Medicine, vol. 326, no. 12, pp. 800–806, 1992. View at Google Scholar · View at Scopus
  6. B. Furie, “Pathogenesis of thrombosis,” Hematology American Society of Hematology Education Program, pp. 255–258, 2009. View at Google Scholar
  7. H.-L. Yang, F.-J. Lu, S.-L. Wung, and H.-C. Chiu, “Humic acid induces expression of tissue factor by cultured endothelial cells: regulation by cytosolic calcium and protein kinase C,” Thrombosis and Haemostasis, vol. 71, no. 3, pp. 325–330, 1994. View at Google Scholar · View at Scopus
  8. M. Camera, P. L. A. Giesen, J. Fallon et al., “Cooperation between VEGF and TNF-α is necessary for exposure of active tissue factor on the surface of human endothelial cells,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 19, no. 3, pp. 531–537, 1999. View at Google Scholar · View at Scopus
  9. J. H. Morrissey, B. G. Macik, P. F. Neuenschwander, and P. C. Comp, “Quantitation of activated factor VII levels in plasma using a tissue factor mutant selectively deficient in promoting factor VII activation,” Blood, vol. 81, no. 3, pp. 734–744, 1993. View at Google Scholar · View at Scopus
  10. S. Eichinger, P. M. Mannucci, F. Tradati, A. A. Arbini, R. D. Rosenberg, and K. A. Bauer, “Determinants of plasma factor VIIa levels in humans,” Blood, vol. 86, no. 8, pp. 3021–3025, 1995. View at Google Scholar · View at Scopus
  11. J. H. Lawson and K. G. Mann, “Cooperative activation of human factor IX by the human extrinsic pathway of blood coagulation,” Journal of Biological Chemistry, vol. 266, no. 17, pp. 11317–11327, 1991. View at Google Scholar · View at Scopus
  12. M. C. Minnema, H. Ten Cate, and C. E. Hack, “The role of factor XI in coagulation: a matter of revision,” Seminars in Thrombosis and Hemostasis, vol. 25, no. 4, pp. 419–428, 1999. View at Google Scholar · View at Scopus
  13. S. Butenas, C. Van 't Veer, and K. G. Mann, “Evaluation of the initiation phase of blood coagulation using ultrasensitive assays for serine proteases,” Journal of Biological Chemistry, vol. 272, no. 34, pp. 21527–21533, 1997. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Hugel, G. Socié, T. Vu et al., “Elevated levels of circulating procoagulant microparticles in patients with paroxysmal nocturnal hemoglobinuria and aplastic anemia,” Blood, vol. 93, no. 10, pp. 3451–3456, 1999. View at Google Scholar · View at Scopus
  15. K. G. Mann, S. Krishnaswamy, and J. H. Lawson, “Surface-dependent hemostasis,” Seminars in Hematology, vol. 29, no. 3, pp. 213–226, 1992. View at Google Scholar · View at Scopus
  16. M. Kalafatis, N. A. Swords, and K. G. Mann, “Membrane-dependent reactions in blood coagulation: role of the vitamin K-dependent enzyme complexes,” Biochimica et Biophysica Acta, vol. 1227, no. 3, pp. 113–129, 1994. View at Publisher · View at Google Scholar · View at Scopus
  17. D. Gailani and G. J. Broze Jr., “Factor XI activation in a revised model of blood coagulation,” Science, vol. 253, no. 5022, pp. 909–912, 1991. View at Google Scholar · View at Scopus
  18. M. W. Mosesson, “The roles of fibrinogen and fibrin in hemostasis and thrombosis,” Seminars in Hematology, vol. 29, no. 3, pp. 177–188, 1992. View at Google Scholar · View at Scopus
  19. M. C. Naski, L. Lorand, and J. A. Shafer, “Characterization of the kinetic pathway for fibrin promotion of α-thrombin-catalyzed activation of plasma factor XIII,” Biochemistry, vol. 30, no. 4, pp. 934–941, 1991. View at Google Scholar · View at Scopus
  20. K. E. Brummel, S. Butenas, and K. G. Mann, “An integrated study of fibrinogen during blood coagulation,” Journal of Biological Chemistry, vol. 274, no. 32, pp. 22862–22870, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. P. A. Gentry, “Comparative aspects of blood coagulation,” Veterinary Journal, vol. 168, no. 3, pp. 238–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. R. L. Bick and G. Murano, “Physiology of hemostasis,” Clinics in Laboratory Medicine, vol. 14, no. 4, pp. 677–707, 1994. View at Google Scholar · View at Scopus
  23. N. R. Goldsack, R. C. Chambers, K. Dabbagh, and G. J. Laurent, “Molecules in focus thrombin,” International Journal of Biochemistry and Cell Biology, vol. 30, no. 6, pp. 641–646, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. J. W. Fenton II, “Thrombin specificity,” Annals of the New York Academy of Sciences, vol. 370, pp. 468–495, 1981. View at Google Scholar · View at Scopus
  25. J. W. Fenton II, T. A. Olson, M. P. Zabinski, and G. D. Wilner, “Anion-binding exosite of human α-thrombin and fibrin(ogen) recognition,” Biochemistry, vol. 27, no. 18, pp. 7106–7112, 1988. View at Google Scholar · View at Scopus
  26. M. C. Naski, J. W. Fenton II, J. M. Maraganore, S. T. Olson, and J. A. Shafer, “The COOH-terminal domain of hirudin. An exosite-directed competitive inhibitor of the action of α-thrombin on fibrinogen,” Journal of Biological Chemistry, vol. 265, no. 23, pp. 13484–13489, 1990. View at Google Scholar · View at Scopus
  27. K.-P. Hopfner and E. Di Cera, “Energetics of thrombin-fibrinogen interaction,” Biochemistry, vol. 31, no. 46, pp. 11567–11571, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. M.-C. Bouton, M. Jandrot-Perrus, A. Bezeaud, and M.-C. Guillin, “Late-fibrin(ogen) fragment E modulates human α-thrombin specificity,” European Journal of Biochemistry, vol. 215, no. 1, pp. 143–149, 1993. View at Google Scholar · View at Scopus
  29. T. J. Rydel, K. G. Ravichandran, A. Tulinsky et al., “The structure of a complex of recombinant hirudin and human α-thrombin,” Science, vol. 249, no. 4966, pp. 277–280, 1990. View at Google Scholar · View at Scopus
  30. T. J. Rydel, A. Tulinsky, W. Bode, and R. Huber, “Refined structure of the Hirudin-Thrombin complex,” Journal of Molecular Biology, vol. 221, no. 2, pp. 583–601, 1991. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Bode, D. Turk, and A. Karshikov, “The refined 1.9-Å X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human α-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships,” Protein Science, vol. 1, no. 4, pp. 426–471, 1992. View at Google Scholar · View at Scopus
  32. J. Hofsteenge and S. R. Stone, “The effect of thrombomodulin on the cleavage of fibrinogen and fibrinogen fragments by thrombin,” European Journal of Biochemistry, vol. 168, no. 1, pp. 49–56, 1987. View at Google Scholar · View at Scopus
  33. K. Suzuki, J. Nishioka, and T. Hayashi, “Localization of thrombomodulin-binding site within human thrombin,” Journal of Biological Chemistry, vol. 265, no. 22, pp. 13263–13267, 1990. View at Google Scholar · View at Scopus
  34. I. I. Mathews, K. P. Padmanabhan, A. Tulinsky, and J. E. Sadler, “Structure of a nonadecapeptide of the fifth EGF domain of thrombomodulin complexed with thrombin,” Biochemistry, vol. 33, no. 46, pp. 13547–13552, 1994. View at Google Scholar · View at Scopus
  35. J. Srinivasan, S. Hu, R. Hrabal, Y. Zhu, E. A. Komives, and F. Ni, “Thrombin-bound structure of an EGF subdomain from human thrombomodulin determined by transferred nuclear overhauser effects,” Biochemistry, vol. 33, no. 46, pp. 13553–13560, 1994. View at Google Scholar · View at Scopus
  36. T.-K. H. Vu, V. I. Wheaton, D. T. Hung, I. Charo, and S. R. Coughlin, “Domains specifying thrombin-receptor interaction,” Nature, vol. 353, no. 6345, pp. 674–677, 1991. View at Publisher · View at Google Scholar · View at Scopus
  37. T.-K. H. Vu, D. T. Hung, V. I. Wheaton, and S. R. Coughlin, “Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation,” Cell, vol. 64, no. 6, pp. 1057–1068, 1991. View at Google Scholar · View at Scopus
  38. F. Ni, D. R. Ripoll, P. D. Martin, and B. F. P. Edwards, “Solution structure of a platelet receptor peptide bound to bovine α-thrombin,” Biochemistry, vol. 31, no. 46, pp. 11551–11557, 1992. View at Google Scholar · View at Scopus
  39. H. Ishihara, A. J. Connolly, D. Zeng et al., “Protease-activated receptor 3 is a second thrombin receptor in humans,” Nature, vol. 386, no. 6624, pp. 502–506, 1997. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Bourin and U. Lindahl, “Glycosaminoglycans and the regulation of blood coagulation,” Biochemical Journal, vol. 289, no. 2, pp. 313–330, 1993. View at Google Scholar · View at Scopus
  41. R. K. Arni, K. Padmanabhan, K. P. Padmanabhan, T.-P. Wu, and A. Tulinsky, “Structures of the noncovalent complexes of human and bovine prothrombin fragment 2 with human PPACK-thrombin,” Biochemistry, vol. 32, no. 18, pp. 4727–4737, 1993. View at Publisher · View at Google Scholar · View at Scopus
  42. D. D. Castellone and E. M. Van Cott, “Laboratory monitoring of new anticoagulants,” American Journal of Hematology, vol. 85, no. 3, pp. 185–187, 2010. View at Google Scholar
  43. J. Travis and G. S. Salvesen, “Human plasma proteinase inhibitors,” Annual Review of Biochemistry, vol. 52, pp. 655–709, 1983. View at Google Scholar · View at Scopus
  44. B. Dahlbäck, “Blood coagulation,” Lancet, vol. 355, no. 9215, pp. 1627–1632, 2000. View at Google Scholar · View at Scopus
  45. V. Laux, E. Perzborn, S. Heitmeier et al., “Direct inhibitors of coagulation proteins—the end of the heparin and low-molecular-weight heparin era for anticoagulant therapy?” Thrombosis and Haemostasis, vol. 102, no. 5, pp. 892–899, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. J. W. Fenton II, F. A. Ofosu, D. G. Moon, and J. M. Maraganore, “Thrombin structure and function: why thrombin is the primary target for antithrombotics,” Blood Coagulation & Fibrinolysis, vol. 2, no. 1, pp. 69–75, 1991. View at Google Scholar · View at Scopus
  47. C. Bode, T. K. Nordt, and M. S. Runge, “Thrombolytic therapy in acute myocardial infarction—selected recent developments,” Annals of Hematology, vol. 69, no. 4, pp. S35–S40, 1994. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Lombardi, G. De Simone, S. Galdiero, N. Staiano, F. Nastri, and V. Pavone, “From natural to synthetic multisite thrombin inhibitors,” Biopolymers, vol. 51, no. 1, pp. 19–39, 1999. View at Google Scholar · View at Scopus
  49. C. L. Arocha-Piñango, R. Marchi, Z. Carvajal, and B. Guerrero, “Invertebrate compounds acting on the hemostatic mechanism,” Blood Coagulation and Fibrinolysis, vol. 10, no. 2, pp. 43–68, 1999. View at Google Scholar · View at Scopus
  50. S. Iwanaga, M. Okada, H. Isawa, A. Morita, M. Yuda, and Y. Chinzei, “Identification and characterization of novel salivary thrombin inhibitors from the ixodidae tick, Haemaphysalis longicornis,” European Journal of Biochemistry, vol. 270, no. 9, pp. 1926–1934, 2003. View at Publisher · View at Google Scholar · View at Scopus
  51. S. J. Gardell, D. R. Ramjit, I. I. Stabilito et al., “Effective thrombolysis without marked plasminemia after bolus intravenous administration of vampire bat salivary plasminogen activator in rabbits,” Circulation, vol. 84, no. 1, pp. 244–253, 1991. View at Google Scholar · View at Scopus
  52. J. W. Jacobs, E. W. Cupp, M. Sardana, and P. A. Friedman, “Isolation and characterization of a coagulation factor Xa inhibitor from black fly salivary glands,” Thrombosis and Haemostasis, vol. 64, no. 2, pp. 235–238, 1990. View at Google Scholar · View at Scopus
  53. L. Waxman, D. E. Smith, K. E. Arcuri, and G. P. Vlasuk, “Tick anticoagulant peptide (TAP) is a novel inhibitor of blood coagulation factor Xa,” Science, vol. 248, no. 4955, pp. 593–596, 1990. View at Google Scholar · View at Scopus
  54. R. T. Sawyer, Leech Biology and Behavior, vol. 1, Oxford Science Publications, Oxford, UK, 1986.
  55. R. T. Sawyer, “Thrombolytics and anticoagulants from leeches,” Nature Biotechnology, vol. 9, no. 6, pp. 513–518, 1991. View at Google Scholar · View at Scopus
  56. M. Cappello, G. P. Vlasuk, P. W. Bergum, S. Huang, and P. J. Hotez, “Ancylostoma caninum anticoagulant peptide: a hookworm-derived inhibitor of human coagulation factor Xa,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 6152–6156, 1995. View at Publisher · View at Google Scholar · View at Scopus
  57. F. Markwardt, “Hirudin as an inhibitor of thrombin,” Methods in Enzymology, vol. 19, p. 1970, 1970. View at Google Scholar
  58. F. Markwardt, G. Nowak, U. Sturzebecher, and P. Walsmann, “Studies on the pharmacokinetics of hirudin,” Biomedica Biochimica Acta, vol. 46, no. 4, pp. 237–244, 1987. View at Google Scholar · View at Scopus
  59. F. Markwardt, “Development of hirudin as an antithrombotic agent,” Seminars in Thrombosis and Hemostasis, vol. 15, no. 3, pp. 269–282, 1989. View at Google Scholar · View at Scopus
  60. F. Markwardt, B. Kaiser, and G. Nowak, “Studies on antithrombotic effects of recombinant hirudin,” Thrombosis Research, vol. 54, no. 5, pp. 377–388, 1989. View at Google Scholar · View at Scopus
  61. M. Scharf, J. Engels, and T. D. , “Primary structures of new 'iso-hirudins',” FEBS Letters, vol. 255, no. 1, pp. 105–110, 1989. View at Publisher · View at Google Scholar · View at Scopus
  62. K.-H. Strube, B. Kroger, S. Bialojan, M. Otte, and J. Dodt, “Isolation, sequence analysis, and cloning of haemadin. An anticoagulant peptide from the Indian leech,” Journal of Biological Chemistry, vol. 268, no. 12, pp. 8590–8595, 1993. View at Google Scholar · View at Scopus
  63. M. Salzet, V. Chopin, J.-L. Baert, I. Matias, and J. Malecha, “Theromin, a novel leech thrombin inhibitor,” Journal of Biological Chemistry, vol. 275, no. 40, pp. 30774–30780, 2000. View at Google Scholar · View at Scopus
  64. K.-G. Fischer, “The role of recombinant hirudins in the management of thrombotic disorders,” BioDrugs, vol. 18, no. 4, pp. 235–268, 2004. View at Publisher · View at Google Scholar · View at Scopus
  65. S. R. Deitcher, “Clinical utility of subcutaneous hirudins,” American Journal of Health-System Pharmacy, vol. 60, pp. S27–S31, 2003. View at Google Scholar · View at Scopus
  66. A. Greinacher, P. Eichler, D. Albrecht, U. Strobel, B. Pötzsch, and B. I. Eriksson, “Antihirudin antibodies following low-dose subcutaneous treatment with desirudin for thrombosis prophylaxis after hip-replacement surgery: incidence and clinical relevance,” Blood, vol. 101, no. 7, pp. 2617–2619, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. N. Lubenow and A. Greinacher, “Management of patients with heparin-induced thrombocytopenia: focus on recombinant hirudin,” Journal of Thrombosis and Thrombolysis, vol. 10, supplement 1, pp. S47–S57, 2000. View at Google Scholar · View at Scopus
  68. E. A. Nutescu, N. L. Shapiro, A. Chevalier, and A. N. Amin, “A pharmacologic overview of current and emerging anticoagulants,” Cleveland Clinic Journal of Medicine, vol. 72, supplement 1, pp. S2–S6, 2005. View at Google Scholar · View at Scopus
  69. A. Greinacher, U. Janssens, G. Berg et al., “Lepirudin (recombinant hirudin) for parenteral anticoagulation in patients with heparin-induced thrombocytopenia,” Circulation, vol. 100, no. 6, pp. 587–593, 1999. View at Google Scholar · View at Scopus
  70. V. Steiner, R. Knecht, K. Olaf Börnsen et al., “Primary structure and function of novel O-glycosylated hirudins from the leech Hirudinaria manillensis,” Biochemistry, vol. 31, no. 8, pp. 2294–2298, 1992. View at Google Scholar · View at Scopus
  71. J. L. Krstenansky, T. J. Owen, M. T. Yates, and S. J. T. Mao, “The C-terminal binding domain of hirullin P18. Antithrombin activity and comparison to hirudin peptides,” FEBS Letters, vol. 269, no. 2, pp. 425–429, 1990. View at Publisher · View at Google Scholar · View at Scopus
  72. X. Qiu, M. Yin, K. P. Padmanabhan, J. L. Krstenansky, and A. Tulinsky, “Structures of thrombin complexes with a designed and a natural exosite peptide inhibitor,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20318–20326, 1993. View at Google Scholar · View at Scopus
  73. V. De Filippis, A. Vindigni, L. Altichieri, and A. Fontana, “Core domain of hirudin from the leech Hirudinaria manillensis: chemical synthesis, purification, and characterization of a Trp3 analog of fragment 1–47,” Biochemistry, vol. 34, no. 29, pp. 9552–9564, 1995. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Noeske-Jungblut, B. Haendler, P. Donner, A. Alagon, L. Possani, and W.-D. Schleuning, “Triabin, a highly potent exosite inhibitor of thrombin,” Journal of Biological Chemistry, vol. 270, no. 48, pp. 28629–28634, 1995. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Friedrich, B. Kroger, S. Bialojan et al., “A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus,” Journal of Biological Chemistry, vol. 268, no. 22, pp. 16216–16222, 1993. View at Google Scholar · View at Scopus
  76. K. Mende, O. Petoukhova, V. Koulitchkova et al., “Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect Dipetalogaster maximus. cDNA cloning, expression and characterization,” European Journal of Biochemistry, vol. 266, no. 2, pp. 583–590, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. K. Mende, U. Lange, and G. Nowak, “Three recombinant serine proteinase inhibitors expressed from the coding region of the thrombin inhibitor dipetalogastin,” Insect Biochemistry and Molecular Biology, vol. 34, no. 9, pp. 971–979, 2004. View at Publisher · View at Google Scholar · View at Scopus
  78. I. T. N. Campos, R. Amino, C. A. M. Sampaio et al., “Infestin, a thrombin inhibitor presents in Triatoma infestans midgut, a Chagas' disease vector: gene cloning, expression and characterization of the inhibitor,” Insect Biochemistry and Molecular Biology, vol. 32, no. 9, pp. 991–997, 2002. View at Publisher · View at Google Scholar · View at Scopus
  79. I. T. N. Campos, B. G. Guimarães, F. J. Medrano, A. S. Tanaka, and J. A. R. G. Barbosa, “Crystallization, data collection and phasing of infestin 4, a factor XIIa inhibitor,” Acta Crystallographica Section D, vol. 60, no. 11, pp. 2051–2053, 2004. View at Publisher · View at Google Scholar · View at Scopus
  80. D. V. Lovato, I. T. Nicolau de Campos, R. Amino, and A. S. Tanaka, “The full-length cDNA ofanticoagulant protein infestin revealed anovel releasable Kazal domain, aneutrophil elastase inhibitor lacking anticoagulant activity,” Biochimie, vol. 88, no. 6, pp. 673–681, 2006. View at Publisher · View at Google Scholar · View at Scopus
  81. R. N. Araujo, I. T. N. Campos, A. S. Tanaka et al., “Brasiliensin: a novel intestinal thrombin inhibitor from Triatoma brasiliensis (Hemiptera: Reduviidae) with an important role in blood intake,” International Journal for Parasitology, vol. 37, no. 12, pp. 1351–1358, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Cappello, P. W. Bergum, G. P. Vlasuk, B. A. Furmidge, D. I. Pritchard, and S. Aksoy, “Isolation and characterization of the tsetse thrombin inhibitor: a potent antithrombotic peptide from the saliva of Glossina morsitans morsitans,” American Journal of Tropical Medicine and Hygiene, vol. 54, no. 5, pp. 475–480, 1996. View at Google Scholar · View at Scopus
  83. M. Cappello, S. Li, X. Chen et al., “Tsetse thrombin inhibitor: bloodmeal-induced expression of an anticoagulant in salivary glands and gut tissue of Glossina morsitans morsitans,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 24, pp. 14290–14295, 1998. View at Publisher · View at Google Scholar · View at Scopus
  84. A. D. Bior, R. C. Essenberg, and J. R. Sauer, “Comparison of differentially expressed genes in the salivary glands of male ticks, Amblyomma americanum and Dermacentor andersoni,” Insect Biochemistry and Molecular Biology, vol. 32, no. 6, pp. 645–655, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. J. H. Law, J. M. C. Ribeiro, and M. A. Wells, “Biochemical insights derived from insect diversity,” Annual Review of Biochemistry, vol. 61, pp. 87–111, 1992. View at Google Scholar · View at Scopus
  86. J. R. Sauer, J. L. McSwain, A. S. Bowman, and R. C. Essenberg, “Tick salivary gland physiology,” Annual Review of Entomology, vol. 40, pp. 245–267, 1995. View at Google Scholar · View at Scopus
  87. A. S. Bowman, L. B. Coons, G. R. Needham, and J. R. Sauer, “Tick saliva: recent advances and implications for vector competence,” Medical and Veterinary Entomology, vol. 11, no. 3, pp. 277–285, 1997. View at Google Scholar · View at Scopus
  88. P. A. Nuttall, G. C. Paesen, C. H. Lawrie, and H. Wang, “Vector-host interactions in disease transmission,” Journal of Molecular Microbiology and Biotechnology, vol. 2, no. 4, pp. 381–386, 2000. View at Google Scholar · View at Scopus
  89. A. Van De Locht, M. T. Stubbs, W. Bode et al., “The ornithodorin-thrombin crystal structure, a key to the TAP enigma?” EMBO Journal, vol. 15, no. 22, pp. 6011–6017, 1996. View at Google Scholar · View at Scopus
  90. A. M. Joubert, A. I. Louw, F. Joubert, and A. W. H. Neitz, “Cloning, nucleotide sequence and expression of the gene encoding factor Xa inhibitor from the salivary glands of the tick, Ornithodoros savignyi,” Experimental and Applied Acarology, vol. 22, no. 10, pp. 603–619, 1998. View at Publisher · View at Google Scholar · View at Scopus
  91. J. Nienaber, A. R. M. Gaspar, and A. W. H. Neitz, “Savignin, a potent thrombin inhibitor isolated from the salivary glands of the tick Ornithodoros savignyi (Acari: Argasidae),” Experimental Parasitology, vol. 93, no. 2, pp. 82–91, 1999. View at Publisher · View at Google Scholar · View at Scopus
  92. A. Van de Locht, D. Lamba, M. Bauer et al., “Two heads are better than one: crystal structure of the insect derived double domain Kazal inhibitor rhodniin in complex with thrombin,” EMBO Journal, vol. 14, no. 21, pp. 5149–5157, 1995. View at Google Scholar · View at Scopus
  93. R. Lai, H. Takeuchi, J. Jonczy, H. H. Rees, and P. C. Turner, “A thrombin inhibitor from the ixodid tick, Amblyomma hebraeum,” Gene, vol. 342, no. 2, pp. 243–249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. F. Horn, P. Coutinho dos Santos, and C. Termignoni, “Boophilus microplus anticoagulant protein: an antithrombin inhibitor isolated from the cattle tick saliva,” Archives of Biochemistry and Biophysics, vol. 384, no. 1, pp. 68–73, 2000. View at Publisher · View at Google Scholar · View at Scopus
  95. K. B. de Morais, C. O. Vieira, I. Y. Hirata, and A. M. Tanaka-Azevedo, “Bothrops jararaca antithrombin: isolation, characterization and comparison with other animal antithrombins,” Comparative Biochemistry and Physiology, vol. 152, no. 2, pp. 171–176, 2009. View at Publisher · View at Google Scholar · View at Scopus
  96. A. M. Tanaka-Azevedo, A. S. Tanaka, and I. S. Sano-Martins, “A new blood coagulation inhibitor from the snake Bothrops jararaca plasma: isolation and characterization,” Biochemical and Biophysical Research Communications, vol. 308, no. 4, pp. 706–712, 2003. View at Publisher · View at Google Scholar · View at Scopus
  97. A. M. Tanaka-Azevedo, “Characterization of Bothrops jararaca coagulation inhibitor (BjI) and presence of similar protein in plasma of other animals,” Toxicon, vol. 44, no. 3, pp. 289–294, 2004. View at Google Scholar
  98. R. F. Doolittle, “The evolution of vertebrate blood coagulation: a case of yin and yang,” Thrombosis and Haemostasis, vol. 70, no. 1, pp. 24–28, 1993. View at Google Scholar · View at Scopus
  99. J. Roemisch, E. Gray, J. N. Hoffmann, C. J. Wiedermann, and U. Kalina, “Antithrombin: a new look at the actions of a serine protease inhibitor,” Blood Coagulation and Fibrinolysis, vol. 13, no. 8, pp. 657–670, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. R. D. Rosenberg and P. S. Damus, “The purification and mechanism of action of human antithrombin heparin cofactor,” Journal of Biological Chemistry, vol. 248, no. 18, pp. 6490–6505, 1973. View at Google Scholar · View at Scopus
  101. E. F. Barrett and J. N. Barrett, “Separation of 2 voltage sensitive potassium currents, and demonstration of a tetrodotoxin resistant calcium current in frog motoneurones,” Journal of Physiology, vol. 255, no. 3, pp. 737–774, 1976. View at Google Scholar · View at Scopus
  102. N. S. Quinsey, A. L. Greedy, S. P. Bottomley, J. C. Whisstock, and R. N. Pike, “Antithrombin: in control of coagulation,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 3, pp. 386–389, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. R. E. Jordan, “Antithrombin in vertebrate species: conservation of the heparin-dependent anticoagulant mechanism,” Archives of Biochemistry and Biophysics, vol. 227, no. 2, pp. 587–595, 1983. View at Google Scholar · View at Scopus
  104. L. Nahas et al., “Blood coagulation inhibitor in a snake plasma (Bothrops jararaca),” Thrombosis et Diathesis Haemorrhagica, vol. 30, no. 1, pp. 106–113, 1973. View at Google Scholar
  105. R. B. Zingali, M. Jandrot-Perrus, M.-C. Guillin, and C. Bon, “Bothrojaracin, a new thrombin inhibitor isolated from Bothrops jararaca venom: characterization and mechanism of thrombin inhibition,” Biochemistry, vol. 32, no. 40, pp. 10794–10802, 1993. View at Publisher · View at Google Scholar · View at Scopus
  106. L.-W. Liu, A. R. Rezaie, C. W. Carson, N. L. Esmon, and C. T. Esmon, “Occupancy of anion binding exosite 2 on thrombin determines Ca2+ dependence of protein C activation,” Journal of Biological Chemistry, vol. 269, no. 16, pp. 11807–11812, 1994. View at Google Scholar · View at Scopus
  107. P. E. Bock, “Active-site-selective labeling of blood coagulation proteinases with fluorescence probes by the use of thioester peptide chloromethyl ketones. II. Properties of thrombin derivatives as reporters of prothrombin fragment 2 binding and specificity of the labeling approach for other proteinases,” The Journal of Biological Chemistry, vol. 267, no. 21, pp. 14974–14981, 1992. View at Google Scholar
  108. K. Batista de Morais, K. Fernandes Grego, and A. Mitico Tanaka-Azevedo, “Identification of proteins similar to Bothrops jararaca coagulation inhibitor (BjI) in the plasmas of Bothrops alternatus, Bothrops jararacussu and Crotalus durissus terrificus snakes,” Comparative Biochemistry and Physiology. B, vol. 149, no. 2, pp. 236–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. E.-R. M. Redwan, “Animal-derived pharmaceutical proteins,” Journal of Immunoassay and Immunochemistry, vol. 30, no. 3, pp. 262–290, 2009. View at Publisher · View at Google Scholar · View at Scopus