Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 642804, 16 pages
http://dx.doi.org/10.1155/2010/642804
Review Article

Prospects for the Use of Artificial Chromosomes and Minichromosome-Like Episomes in Gene Therapy

1Departamento de Biología Molecular, Universidad Autónoma de Madrid, 28049 Madrid, Spain
2Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), C/Nicolás Cabrera 1, Universidad Autónoma de Madrid, 28049 Madrid, Spain
3U-748, Area de Neurogenética, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain

Received 19 February 2010; Revised 2 June 2010; Accepted 5 July 2010

Academic Editor: Rudi Beyaert

Copyright © 2010 Sara Pérez-Luz and Javier Díaz-Nido. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Dai, E. M. Schwarz, D. Gu, W.-W. Zhang, N. Sarvetnick, and I. M. Verma, “Cellular and humoral immune responses to adenoviral vectors containing factor IX gene: tolerization of factor IX and vector antigens allows for long-term expression,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1401–1405, 1995. View at Publisher · View at Google Scholar · View at Scopus
  2. P. R. Lowenstein, R. J. Mandel, W.-D. Xiong, K. Kroeger, and M. G. Castro, “Immune responses to adenovirus and adeno-associated vectors used for gene therapy of brain diseases: the role of immunological synapses in understanding the cell biology of neuroimmune interactions,” Current Gene Therapy, vol. 7, no. 5, pp. 347–360, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Kochanek, P. R. Clemens, K. Mitani, H.-H. Chen, S. Chan, and C. T. Caskey, “A new adenoviral vector: replacement of all viral coding sequences with 28 kb of DNA independently expressing both full-length dystrophin and β-galactosidase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 12, pp. 5731–5736, 1996. View at Google Scholar · View at Scopus
  4. S. Kochanek, G. Schiedner, and C. Volpers, “High-capacity 'gutless' adenoviral vectors,” Current Opinion in Molecular Therapeutics, vol. 3, no. 5, pp. 454–463, 2001. View at Google Scholar · View at Scopus
  5. P. R. Lowenstein, C. E. Thomas, and C. E. Thomas, “High-capacity, helper-dependent, "gutless" adenoviral vectors for gene transfer into brain,” Methods in Enzymology, vol. 346, pp. 292–311, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. G. Palù, C. Parolin, Y. Takeuchi, and M. Pizzato, “Progress with retroviral gene vectors,” Reviews in Medical Virology, vol. 10, no. 3, pp. 185–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Li, J. Düllmann, and J. Düllmann, “Murine leukemia induced by retroviral gene marking,” Science, vol. 296, no. 5567, p. 497, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. C. E. Thomas, A. Ehrhardt, and M. A. Kay, “Progress and problems with the use of viral vectors for gene therapy,” Nature Reviews Genetics, vol. 4, no. 5, pp. 346–358, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. E. Check, “Regulators split on gene therapy as patient shows signs of cancer,” Nature, vol. 419, no. 6907, pp. 545–546, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. L. Naldini, U. Blömer, and U. Blömer, “In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector,” Science, vol. 272, no. 5259, pp. 263–267, 1996. View at Google Scholar · View at Scopus
  11. J. Reiser, G. Harmison, S. Kluepfel-Stahl, R. O. Brady, S. Karlsson, and M. Schubert, “Transduction of nondividing cells using pseudotyped defective high-titer HIV type 1 particles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 26, pp. 15266–15271, 1996. View at Google Scholar · View at Scopus
  12. D. Pannell, C. S. Osborne, and C. S. Osborne, “Retrovirus vector silencing is de novo methylase independent and marked by a repressive histone code,” EMBO Journal, vol. 19, no. 21, pp. 5884–5894, 2000. View at Google Scholar · View at Scopus
  13. R. Jaenisch, “Transgenic animals,” Science, vol. 240, no. 4858, pp. 1468–1474, 1988. View at Google Scholar · View at Scopus
  14. D. D. Pittman, E. M. Alderman, K. N. Tomkinson, J. H. Wang, A. R. Giles, and R. J. Kaufman, “Biochemical, immunological, and in vivo functional characterization of B- domain-deleted factor VIII,” Blood, vol. 81, no. 11, pp. 2925–2935, 1993. View at Google Scholar · View at Scopus
  15. C. Huxley, “Exploring gene function: use of yeast artificial chromosome transgenesis,” Methods, vol. 14, no. 2, pp. 199–210, 1998. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  16. J. P. Sarsero, L. Li, and L. Li, “Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice,” Mammalian Genome, vol. 15, no. 5, pp. 370–382, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. G. Brem, U. Besenfelder, B. Aigner, M. Muller, I. Liebl, G. Schutz, and L. Montoliu, “YAC transgenesis in farm animals: rescue of albinism in rabbits,” Molecular Reproduction and Development, vol. 44, no. 1, pp. 56–62, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Giraldo and L. Montoliu, “Size matters: use of YACs, BACs and PACs in transgenic animals,” Transgenic Research, vol. 10, no. 2, pp. 83–103, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. M. A. Pook, S. Al-Mahdawi, and S. Al-Mahdawi, “Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis,” Neurogenetics, vol. 3, no. 4, pp. 185–193, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. P. N. Moreira, J. Pozueta, M. Pérez-Crespo, F. Valdivieso, A. Gutiérrez-Adán, and L. Montoliu, “Improving the generation of genomic-type transgenic mice by ICSI,” Transgenic Research, vol. 16, no. 2, pp. 163–168, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. A. L. Manson, A. E. O. Trezise, and A. E. O. Trezise, “Complementation of null CF mice with a human CFTR YAC transgene,” EMBO Journal, vol. 16, no. 14, pp. 4238–4249, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. J. G. Hodgson, D. J. Smith, and D. J. Smith, “Human huntingtin derived from YAC transgenes compensates for loss of murine huntingtin by rescue of the embryonic lethal phenotype,” Human Molecular Genetics, vol. 5, no. 12, pp. 1875–1885, 1996. View at Google Scholar · View at Scopus
  23. N. G. Copeland, N. A. Jenkins, and D. L. Court, “Recombineering: a powerful new tool for mouse functional genomics,” Nature Reviews Genetics, vol. 2, no. 10, pp. 769–779, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. J. P. P. Muyrers, Y. Zhang, and A. F. Stewart, “Techniques: recombinogenic engineering—new options for cloning and manipulating DNA,” Trends in Biochemical Sciences, vol. 26, no. 5, pp. 325–331, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Narayanan, R. Williamson, Y. Zhang, A. F. Stewart, and P. A. Ioannou, “Efficient and precise engineering of a 200 kb β-globin human/bacterial artificial chromosome in E. coli DH10B using an inducible homologous recombination system,” Gene Therapy, vol. 6, no. 3, pp. 442–447, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. I. Poser, M. Sarov, and M. Sarov, “BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals,” Nature Methods, vol. 5, no. 5, pp. 409–415, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. K. H. A. Choo, “Centromere DNA dynamics: latent centromeres and neocentrome formation,” American Journal of Human Genetics, vol. 61, no. 6, pp. 1225–1233, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. D. M. Kurnit and J. J. Maio, “Variable satellite DNA's in the African green monkey Cercopithecus aethiops,” Chromosoma, vol. 45, no. 4, pp. 387–400, 1974. View at Google Scholar · View at Scopus
  29. S. S. Potter and R. S. Jones, “Unusual domains of human alphoid satellite DNA with contiguous non-satellite sequences: sequence analysis of a junction region,” Nucleic Acids Research, vol. 11, no. 10, pp. 3137–3153, 1983. View at Google Scholar · View at Scopus
  30. H. Rosenberg, M. Singer, and M. Rosenberg, “Highly reiterated sequences of SIMIANSIMIANSIMIANSIMIANSIMIAN,” Science, vol. 200, no. 4340, pp. 394–402, 1978. View at Google Scholar · View at Scopus
  31. R. E. Thayer, M. F. Singer, and T. F. McCutchan, “Sequence relationships between single repeat units of highly reiterated African Green monkey DNA,” Nucleic Acids Research, vol. 9, no. 1, pp. 169–181, 1981. View at Google Scholar · View at Scopus
  32. H. F. Willard and J. S. Wayne, “Hierarchical order in chromosome-specific human alpha setellite DNA,” Trends in Genetics, vol. 3, no. 7, pp. 192–198, 1987. View at Google Scholar · View at Scopus
  33. Z. Larin, M. D. Fricker, and C. Tyler-Smith, “De novo formation of several features of a centromere following introduction of a Y alphoid YAC into mammalian cells,” Human Molecular Genetics, vol. 3, no. 5, pp. 689–695, 1994. View at Google Scholar · View at Scopus
  34. R. Wevrick and H. F. Willard, “Long-range organization of tandem arrays of α satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 23, pp. 9394–9398, 1989. View at Publisher · View at Google Scholar · View at Scopus
  35. J. J. Harrington, G. Van Bokkelen, R. W. Mays, K. Gustashaw, and H. F. Willard, “Formation of de novo centromeres and construction of first-generation human artificial microchromosomes,” Nature Genetics, vol. 15, no. 4, pp. 345–355, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. J. E. Mejía, A. Alazami, A. Willmott, P. Marschall, E. Levy, W. C. Earnshaw, and Z. Larin, “Efficiency of de novo centromere formation in human artificial chromosomes,” Genomics, vol. 79, no. 3, pp. 297–304, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. J.-I. Ohzeki, M. Nakano, T. Okada, and H. Masumoto, “CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA,” Journal of Cell Biology, vol. 159, no. 5, pp. 765–775, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. H. Masumoto, M. Ikeno, M. Nakano, T. Okazaki, B. Grimes, H. Cooke, and N. Suzuki, “Assay of centromere function using a human artificial chromosome,” Chromosoma, vol. 107, no. 6-7, pp. 406–416, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. K. H. A. Choo, “Centromerization,” Trends in Cell Biology, vol. 10, no. 5, pp. 182–188, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. D. du Sart, M. R. Cancilla, and M. R. Cancilla, “A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA,” Nature Genetics, vol. 16, no. 2, pp. 144–153, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  41. T. W. Depinet, J. L. Zackowski, and J. L. Zackowski, “Characterization of neo-centromeres in marker chromosomes lacking detectable alpha-satellite DNA,” Human Molecular Genetics, vol. 6, no. 8, pp. 1195–1204, 1997. View at Publisher · View at Google Scholar · View at Scopus
  42. W. C. Earnshaw, H. Ratrie III, and G. Stetten, “Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads,” Chromosoma, vol. 98, no. 1, pp. 1–12, 1989. View at Google Scholar · View at Scopus
  43. H. F. Willard, “Neocentromeres and human artificial chromosomes: an unnatural act,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 10, pp. 5374–5376, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  44. J. W. Yang, C. Pendon, J. Yang, N. Haywood, A. Chand, and W. R. A. Brown, “Human mini-chromosomes with minimal centromeres,” Human Molecular Genetics, vol. 9, no. 12, pp. 1891–1902, 2000. View at Google Scholar · View at Scopus
  45. A. W. I. Lo, G. C.-C. Liao, M. Rocchi, and K. H. A. Choo, “Extreme reduction of chromosome-specific α-satellite array is unusually common in human chromosome 21,” Genome Research, vol. 9, no. 10, pp. 895–908, 1999. View at Publisher · View at Google Scholar · View at Scopus
  46. T. A. Ebersole, A. Ross, E. Clark, N. McGill, D. Schindelhauer, H. Cooke, and B. Grimes, “Mammalian artificial chromosome formation from circular alphoid input DNA does not require telomere repeats,” Human Molecular Genetics, vol. 9, no. 11, pp. 1623–1631, 2000. View at Google Scholar · View at Scopus
  47. M. Ikeno, B. Grimes, and B. Grimes, “Construction of YAC-based mammalian artificial chromosomes,” Nature Biotechnology, vol. 16, no. 5, pp. 431–439, 1998. View at Google Scholar · View at Scopus
  48. G. Kotzamanis, W. Cheung, H. Abdulrazzak, S. Perez-Luz, S. Howe, H. Cooke, and C. Huxley, “Construction of human artificial chromosome vectors by recombineering,” Gene, vol. 351, pp. 29–38, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. H. F. Willard, “Chromosome manipulation: a systematic approach toward understanding human chromosome structure and function,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 14, pp. 6847–6850, 1996. View at Publisher · View at Google Scholar · View at Scopus
  50. D. T. Burke, G. F. Carle, and M. V. Olson, “Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors,” Science, vol. 236, no. 4803, pp. 806–812, 1987. View at Google Scholar · View at Scopus
  51. A. Jakobovits, A. L. Moore, L. L. Green, G. J. Vergara, C. E. Maynard-Currie, H. A. Austin, and S. Klapholz, “Germ-line transmission and expression of a human-derived yeast artificial chromosome,” Nature, vol. 362, no. 6417, pp. 255–258, 1993. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. A. M. Alazami, J. E. Mejía, and Z. L. Monaco, “Human artificial chromosomes containing chromosome 17 alphoid DNA maintain an active centromere in murine cells but are not stable,” Genomics, vol. 83, no. 5, pp. 844–851, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. R. Grimes, D. Schindelhauer, N. I. McGill, A. Ross, T. A. Ebersole, and H. J. Cooke, “Stable gene expression from a mammalian artificial chromosome,” EMBO Reports, vol. 2, no. 10, pp. 910–914, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. J. E. Mejía, A. Willmott, E. Levy, W. C. Earnshaw, and Z. Larin, “Functional complementation of a genetic deficiency with human artificial chromosomes,” American Journal of Human Genetics, vol. 69, no. 2, pp. 315–326, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. J. E. Mejía and Z. Larin, “The assembly of large BACs by in vivo recombination,” Genomics, vol. 70, no. 2, pp. 165–170, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. M. Kakeda, M. Hiratsuka, and M. Hiratsuka, “Human artificial chromosome (HAC) vector provides long-term therapeutic transgene expression in normal human primary fibroblasts,” Gene Therapy, vol. 12, no. 10, pp. 852–856, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. A. M. Killary and R. E. K. Fournier, “Microcell fusion,” Methods in Enzymology, vol. 254, pp. 133–152, 1995. View at Publisher · View at Google Scholar · View at Scopus
  58. H. Hoshiya, Y. Kazuki, and Y. Kazuki, “A highly stable and nonintegrated human artificial chromosome (HAC) containing the 2.4 Mb entire human dystrophin gene,” Molecular Therapy, vol. 17, no. 2, pp. 309–317, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  59. Y. Kazuki, M. Hiratsuka, and M. Hiratsuka, “Complete genetic correction of iPS cells from Duchenne muscular dystrophy,” Molecular Therapy, vol. 18, no. 2, pp. 386–393, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. M. K. Rudd, R. W. Mays, S. Schwartz, and H. F. Willard, “Human artificial chromosomes with alpha satellite-based de novo centromeres show increased frequency of nondisjunction and anaphase lag,” Molecular and Cellular Biology, vol. 23, no. 21, pp. 7689–7697, 2003. View at Publisher · View at Google Scholar · View at Scopus
  61. J. M. Spence, W. Mills, K. Mann, C. Huxley, and C. J. Farr, “Increased missegregation and chromosome loss with decreasing chromosome size in vertebrate cells,” Chromosoma, vol. 115, no. 1, pp. 60–74, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. M. H. Shen, J. W. Yang, J. Yang, C. Pendon, and W. R. A. Brown, “The accuracy of segregation of human mini-chromosomes varies in different vertebrate cell lines, correlates with the extent of centromere formation and provides evidence for a trans-acting centromere maintenance activity,” Chromosoma, vol. 109, no. 8, pp. 524–535, 2000. View at Google Scholar · View at Scopus
  63. C. R. Sclimenti and M. P. Calos, “Epstein-Barr virus vectors for gene expression and transfer,” Current Opinion in Biotechnology, vol. 9, no. 5, pp. 476–479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  64. B. Sugden, K. Marsh, and J. Yates, “A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus,” Molecular and Cellular Biology, vol. 5, no. 2, pp. 410–413, 1985. View at Google Scholar · View at Scopus
  65. J. Yates, N. Warren, D. Reisman, and B. Sugden, “A cis-acting element from the Epstein-Barr viral genome that permits stable replication of recombinant plasmids in latently infected cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 12, pp. 3806–3810, 1984. View at Google Scholar · View at Scopus
  66. J. L. Yates, N. Warren, and B. Sugden, “Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells,” Nature, vol. 313, no. 6005, pp. 812–815, 1985. View at Google Scholar · View at Scopus
  67. D. Reisman, J. Yates, and B. Sugden, “A putative origin of replication of plasmids derived from Epstein-Barr virus is composed of two cis-acting components,” Molecular and Cellular Biology, vol. 5, no. 8, pp. 1822–1832, 1985. View at Google Scholar · View at Scopus
  68. S. Lupton and A. J. Levine, “Mapping genetic elements of Epstein-Barr virus that facilitate extrachromosomal persistence of Epstein-Barr virus-derived plasmids in human cells,” Molecular and Cellular Biology, vol. 5, no. 10, pp. 2533–2542, 1985. View at Google Scholar · View at Scopus
  69. D. R. Rawlins, G. Milman, S. D. Hayward, and G. S. Hayward, “Sequence-specific DNA binding of the Epstein-Barr virus nuclear antigen (EBNA-1) to clustered sites in the plasmid maintenance region,” Cell, vol. 42, no. 3, pp. 859–868, 1985. View at Google Scholar · View at Scopus
  70. T. A. Gahn and C. L. Schildkraut, “The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication,” Cell, vol. 58, no. 3, pp. 527–535, 1989. View at Google Scholar · View at Scopus
  71. D. Reisman and B. Sugden, “trans activation of an Epstein-Barr viral transcriptional enhancer by the Epstein-Barr viral nuclear antigen 1,” Molecular and Cellular Biology, vol. 6, no. 11, pp. 3838–3846, 1986. View at Google Scholar · View at Scopus
  72. J. L. Yates and N. Guan, “Epstein-Barr virus-derived plasmids replicate only once per cell cycle and are not amplified after entry into cells,” Journal of Virology, vol. 65, no. 1, pp. 483–488, 1991. View at Google Scholar · View at Scopus
  73. S. B. Haase and M. P. Calos, “Replication control of autonomously replicating human sequences,” Nucleic Acids Research, vol. 19, no. 18, pp. 5053–5058, 1991. View at Google Scholar · View at Scopus
  74. P. J. Krysan and M. P. Calos, “Epstein-Barr virus-based vectors that replicate in rodent cells,” Gene, vol. 136, no. 1-2, pp. 137–143, 1993. View at Publisher · View at Google Scholar · View at Scopus
  75. V. K. Nayyar, K. Shire, and L. Frappier, “Mitotic chromosome interactions of Epstein-Barr nuclear antigen 1 (EBNA1) and human EBNA1-bindingprotein 2 (EBP2),” Journal of Cell Science, vol. 122, no. 23, pp. 4341–4350, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  76. H. Okayama and P. Berg, “A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells,” Molecular and Cellular Biology, vol. 3, no. 2, pp. 280–289, 1983. View at Google Scholar · View at Scopus
  77. R. F. Margolskee, P. Kavathas, and P. Berg, “Epstein-Barr virus shuttle vector for stable episomal replication of cDNA expression libraries in human cells,” Molecular and Cellular Biology, vol. 8, no. 7, pp. 2837–2847, 1988. View at Google Scholar · View at Scopus
  78. S. Banerjee, E. Livanos, and J.-M. H. Vos, “Therapeutic gene delivery in human B-lymphoblastoid cells by engineered non-transforming infectious Epstein-Barr virus,” Nature Medicine, vol. 1, no. 12, pp. 1303–1308, 1995. View at Google Scholar · View at Scopus
  79. D. C. Lei, K. Kunzelmann, and K. Kunzelmann, “Episomal expression of wild-type CFTR corrects cAMP-dependent chloride transport in respiratory epithelial cells,” Gene Therapy, vol. 3, no. 5, pp. 427–436, 1996. View at Google Scholar · View at Scopus
  80. S. Mücke, A. Polack, and A. Polack, “Suitability of Epstein-Barr virus-based episomal vectors for expression of cytokine genes in human lymphoma cells,” Gene Therapy, vol. 4, no. 2, pp. 82–92, 1997. View at Google Scholar · View at Scopus
  81. J. M. Young, C. Cheadle, J. S. Foulke Jr., W. N. Drohan, and N. Sarver, “Utilization of an Epstein-Barr virus replicon as a eukaryotic expression vector,” Gene, vol. 62, no. 2, pp. 171–185, 1988. View at Google Scholar · View at Scopus
  82. G. Cachianes, C. Ho, R. F. Weber, S. R. Williams, D. V. Goeddel, and D. W. Leung, “Epstein-Barr virus-derived vectors for transient and stable expression of recombinant proteins,” BioTechniques, vol. 15, no. 2, pp. 255–258, 1993. View at Google Scholar · View at Scopus
  83. K. Simpson, A. McGuigan, and C. Huxley, “Stable episomal maintenance of yeast artificial chromosomes in human cells,” Molecular and Cellular Biology, vol. 16, no. 9, pp. 5117–5126, 1996. View at Google Scholar · View at Scopus
  84. A. Harris, B. D. Young, and B. E. Griffin, “Random associated of Epstein-Barr virus genomes with host cell metaphase chromosome in Burkitt's lymphoma-derived cell lines,” Journal of Virology, vol. 56, no. 1, pp. 328–332, 1985. View at Google Scholar · View at Scopus
  85. D. Huertas, S. Howe, A. McGuigan, and C. Huxley, “Expression of the human CFTR gene from episomal oriP-EBNA1-YACs in mouse cells,” Human Molecular Genetics, vol. 9, no. 4, pp. 617–629, 2000. View at Google Scholar · View at Scopus
  86. T. Kaname and C. Huxley, “Simple and efficient vectors for retrofitting BACs and PACs with mammalian neoR and EGFP marker genes,” Gene, vol. 266, no. 1-2, pp. 147–153, 2001. View at Publisher · View at Google Scholar · View at Scopus
  87. C. Magin-Lachmann, G. Kotzamanis, L. D'Aiuto, H. Cooke, C. Huxley, and E. Wagner, “In vitro and in vivo delivery of intact BAC DNA—comparison of different methods,” Journal of Gene Medicine, vol. 6, no. 2, pp. 195–209, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  88. C. Magin-Lachman, G. Kotzamanis, L. D'Aiuto, E. Wagner, and C. Huxley, “Retrofitting BACs with G418 resistance, luciferase, and oriP and EBNA-1—new vectors for in vitro and in vivo delivery,” BMC Biotechnology, vol. 3, article no. 2, 2003. View at Publisher · View at Google Scholar
  89. P. Courvalin, S. Goussard, and C. Grillot-Courvalin, “Gene transfer from bacteria to mammalian cells,” Comptes Rendus de l'Academie des Sciences. Serie III, vol. 318, no. 12, pp. 1207–1212, 1995. View at Google Scholar · View at Scopus
  90. C. Grillot-Courvalin, S. Goussard, and P. Courvalin, “Wild-type intracellular bacteria deliver DNA into mammalian cells,” Cellular Microbiology, vol. 4, no. 3, pp. 177–186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. W. Schaffner, “Direct transfer of cloned genes from bacteria to mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 4 I, pp. 2163–2167, 1980. View at Google Scholar · View at Scopus
  92. C. Grillot-Courvalin, S. Goussard, and P. Courvalin, “Bacteria as gene delivery vectors for mammalian cells,” Current Opinion in Biotechnology, vol. 10, no. 5, pp. 477–481, 1999. View at Publisher · View at Google Scholar · View at Scopus
  93. S. Weiss and T. Chakraborty, “Transfer of eukaryotic expression plasmids to mammalian host cells by bacterial carriers,” Current Opinion in Biotechnology, vol. 12, no. 5, pp. 467–472, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. D. Q. Xu, L. Zhang, D. J. Kopecko, L. Gao, Y. Shao, B. Guo, and L. Zhao, “Bacterial delivery of siRNAs: a new approach to solid tumor therapy,” Methods in Molecular Biology, vol. 487, pp. 161–187, 2009. View at Google Scholar · View at Scopus
  95. M. Chamekh, A. Phalipon, R. Quertainmont, I. Salmon, P. Sansonetti, and A. Allaoui, “Delivery of biologically active anti-inflammatory cytokines IL-10 and IL-1ra in vivo by the Shigella type III secretion apparatus,” Journal of Immunology, vol. 180, no. 6, pp. 4292–4298, 2008. View at Google Scholar · View at Scopus
  96. J. Stritzker, S. Pilgrim, A. A. Szalay, and W. Goebel, “Prodrug converting enzyme gene delivery by L. monocytogenes,” BMC Cancer, vol. 8, article no. 94, 2008. View at Publisher · View at Google Scholar · View at PubMed
  97. A. Al-Mariri, A. Tibor, P. Lestrate, P. Mertens, X. De Bolle, and J.-J. Letesson, “Yersinia enterocolitica as a vehicle for a naked DNA vaccine encoding Brucella abortus bacterioferritin or P39 antigen,” Infection and Immunity, vol. 70, no. 4, pp. 1915–1923, 2002. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Sasaki, M. Fujimori, Y. Hamaji, Y. Hama, K.-I. Ito, J. Amano, and S. Taniguchi, “Genetically engineered Bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats,” Cancer Science, vol. 97, no. 7, pp. 649–657, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  99. P. Michl and T. M. Gress, “Bacteria and bacterial toxins as therapeutic agents for solid tumors,” Current Cancer Drug Targets, vol. 4, no. 8, pp. 689–702, 2004. View at Publisher · View at Google Scholar · View at Scopus
  100. C.-H. Lee, C.-L. Wu, and A.-L. Shiau, “Systemic administration of attenuated Salmonella choleraesuis carrying thrombospondin-1 gene leads to tumor-specific transgene expression, delayed tumor growth and prolonged survival in the murine melanoma model,” Cancer Gene Therapy, vol. 12, no. 2, pp. 175–184, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  101. R. M. Ryan, J. Green, and J. Green, “Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors,” Gene Therapy, vol. 16, no. 3, pp. 329–339, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  102. Z. Li, J. Fallon, J. Mandeli, J. Wetmur, and S. L. C. Woo, “A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer,” Journal of the National Cancer Institute, vol. 100, no. 19, pp. 1389–1400, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  103. J. Theys, W. Landuyt, S. Nuyts, L. Van Mellaert, A. Van Oosterom, P. Lambin, and J. Anné, “Specific targeting of cytosine deaminase to solid tumors by engineered Clostridium acetobutylicum,” Cancer Gene Therapy, vol. 8, no. 4, pp. 294–297, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  104. J.-F. Ning, W. Zhu, J.-P. Xu, C.-Y. Zheng, and X.-L. Meng, “Oral delivery of DNA vaccine encoding VP28 against white spot syndrome virus in crayfish by attenuated Salmonella typhimurium,” Vaccine, vol. 27, no. 7, pp. 1127–1135, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  105. A. Abdul-Wahid and G. Faubert, “Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle,” Vaccine, vol. 25, no. 50, pp. 8372–8383, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  106. K. Sandvig and B. van Deurs, “Delivery into cells: lessons learned from plant and bacterial toxins,” Gene Therapy, vol. 12, no. 11, pp. 865–872, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  107. C. Grillot-Courvalin, S. Goussard, F. Huetz, D. M. Ojcius, and P. Courvalin, “Functional gene transfer from intracellular bacteria to mammalian cells,” Nature Biotechnology, vol. 16, no. 9, pp. 862–866, 1998. View at Google Scholar · View at Scopus
  108. I. Castagliuolo, E. Beggiao, and E. Beggiao, “Engineered E. coli delivers therapeutic genes to the colonic mucosa,” Gene Therapy, vol. 12, no. 13, pp. 1070–1078, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  109. R. R. Isberg, D. L. Voorhis, and S. Falkow, “Identification of invasin: a protein that allows enteric bacteria to penetrate cultured mammalian cells,” Cell, vol. 50, no. 5, pp. 769–778, 1987. View at Google Scholar · View at Scopus
  110. J. M. Leong, R. S. Fournier, and R. R. Isberg, “Identification of the integrin binding domain of the Yersinia pseudotuberculosis invasin protein,” EMBO Journal, vol. 9, no. 6, pp. 1979–1989, 1990. View at Google Scholar · View at Scopus
  111. J. M. Leong, P. E. Morrissey, and R. R. Isberg, “A 76-amino acid disulfide loop in the Yersinia pseudotuberculosis invasin protein is required for integrin receptor recognition,” Journal of Biological Chemistry, vol. 268, no. 27, pp. 20524–20532, 1993. View at Google Scholar · View at Scopus
  112. R. R. Isberg and S. Falkow, “A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12,” Nature, vol. 317, no. 6034, pp. 262–264, 1985. View at Google Scholar · View at Scopus
  113. J. E. Alouf, “Cholesterol-binding cytolytic protein toxins,” International Journal of Medical Microbiology, vol. 290, no. 4-5, pp. 351–356, 2000. View at Google Scholar · View at Scopus
  114. C. Geoffroy, J.-L. Gaillard, J. E. Alouf, and P. Berche, “Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes,” Infection and Immunity, vol. 55, no. 7, pp. 1641–1646, 1987. View at Google Scholar · View at Scopus
  115. P. Cossart, M. F. Vicente, J. Mengaud, F. Baquero, J. C. Perez-Diaz, and P. Berche, “Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation,” Infection and Immunity, vol. 57, no. 11, pp. 3629–3636, 1989. View at Google Scholar · View at Scopus
  116. A. Laner, S. Goussard, and S. Goussard, “Bacterial transfer of large functional genomic DNA into human cells,” Gene Therapy, vol. 12, no. 21, pp. 1559–1572, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  117. K. Narayanan and P. E. Warburton, “DNA modification and functional delivery into human cells using Escherichia coli DH10B,” Nucleic Acids Research, vol. 31, no. 9, article no. e51, 2003. View at Google Scholar
  118. S. Pérez-Luz, H. Abdulrazzak, C. Grillot-Courvalin, and C. Huxley, “Factor VIII mRNA expression from a BAC carrying the intact locus made by homologous recombination,” Genomics, vol. 90, no. 5, pp. 610–619, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  119. K. L. Poffenberger, E. Tabares, and B. Roizman, “Characterization of a viable, noninverting herpes simplex virus 1 genome derived by insertion and deletion of sequences at the junction of components L and S,” Proceedings of the National Academy of Sciences of the United States of America, vol. 80, no. 9 I, pp. 2690–2694, 1983. View at Google Scholar · View at Scopus
  120. A. Oehmig, C. Fraefel, X. O. Breakefield, and M. Ackermann, “Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus,” Current Gene Therapy, vol. 4, no. 4, pp. 385–408, 2004. View at Google Scholar · View at Scopus
  121. R. Wade-Martins, Y. Saeki, and E. A. Chiocca, “Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells,” Molecular Therapy, vol. 7, no. 5, pp. 604–612, 2003. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Müller, O. Saydam, Y. Saeki, I. Heid, and C. Fraefel, “Gene transfer into hepatocytes mediated by herpes simplex virus-Epstein-Barr virus hybrid amplicons,” Journal of Virological Methods, vol. 123, no. 1, pp. 65–72, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  123. A. L. Epstein, P. Marconi, R. Argnani, and R. Manservigi, “HSV-1-derived recombinant and amplicon vectors for gene transfer and gene therapy,” Current Gene Therapy, vol. 5, no. 5, pp. 445–458, 2005. View at Publisher · View at Google Scholar · View at Scopus
  124. P. A. Johnson, A. Miyanohara, F. Levine, T. Cahill, and T. Friedmann, “Cytotoxicity of a replication-defective mutant of herpes simplex virus type I,” Journal of Virology, vol. 66, no. 5, pp. 2952–2965, 1992. View at Google Scholar · View at Scopus
  125. Y. Saeki, C. Fraefel, T. Ichikawa, X. O. Breakefield, and E. A. Chiocca, “Improved helper virus-free packaging system for HSV amplicon vectors using an ICP27-deleted, oversized HSV-1 DNA in a bacterial artificial chromosome,” Molecular Therapy, vol. 3, no. 4, pp. 591–601, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  126. Y. Saeki, T. Ichikawa, and T. Ichikawa, “Herpes simplex virus type 1 DNA amplified as bacterial artificial chromosome in Escherichia coli: rescue of replication-competent virus progeny and packaging of amplicon vectors,” Human Gene Therapy, vol. 9, no. 18, pp. 2787–2794, 1998. View at Google Scholar · View at Scopus
  127. M. Agudo, J. Luis Trejo, F. Lim, J. Avila, I. Torres-Alemän, J. Diaz-Nido, and F. Wandosell, “Highly efficient and specific gene transfer to purkinje cells in vivo using a herpes simplex virus I amplicon,” Human Gene Therapy, vol. 13, no. 5, pp. 665–674, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  128. B. K. Berges, J. H. Wolfe, and N. W. Fraser, “Transduction of brain by herpes simplex virus vectors,” Molecular Therapy, vol. 15, no. 1, pp. 20–29, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  129. D. J. Fink, N. A. DeLuca, W. F. Goins, and J. C. Glorioso, “Gene transfer to neurons using herpes simplex virus-based vectors,” Annual Review of Neuroscience, vol. 19, pp. 265–287, 1996. View at Google Scholar · View at Scopus
  130. A. R. Frampton Jr., W. F. Goins, K. Nakano, E. A. Burton, and J. C. Glorioso, “HSV trafficking and development of gene therapy vectors with applications in the nervous system,” Gene Therapy, vol. 12, no. 11, pp. 891–901, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  131. A. Oehmig, C. Fraefel, and X. O. Breakefield, “Update on herpesvirus amplicon vectors,” Molecular Therapy, vol. 10, no. 4, pp. 630–643, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  132. B. K. Jin, M. Belloni, and M. Belloni, “Prolonged in vivo gene expression driven by a tyrosine hydroxylase promoter in a defective herpes simplex virus amplicon vector,” Human Gene Therapy, vol. 7, no. 16, pp. 2015–2024, 1996. View at Google Scholar · View at Scopus
  133. D. Moralli, K. M. Simpson, R. Wade-Martins, and Z. L. Monaco, “A novel human artificial chromosome gene expression system using herpes simplex virus type 1 vectors,” EMBO Reports, vol. 7, no. 9, pp. 911–918, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  134. E. M. Borst and M. Messerle, “Construction of a cytomegalovirus-based amplicon: a vector with a unique transfer capacity,” Human Gene Therapy, vol. 14, no. 10, pp. 959–970, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  135. P. M. Mannucci and E. G. D. Tuddenham, “The hemophilias—from royal genes to gene therapy,” New England Journal of Medicine, vol. 344, no. 23, pp. 1773–1779, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  136. H. Chao, R. J. Samulski, D. A. Bellinger, P. E. Monahan, T. C. Nichols, and C. E. Walsh, “Persistent expression of canine factor IX in hemophilia B canines,” Gene Therapy, vol. 6, no. 10, pp. 1695–1704, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  137. V. Cherington et al., “Retroviral vector-modified bone marrow stromal cells secrete biologically active factor IX in vitro and transiently deliver therapeutic levels of human factor IX to the plasma of dogs after reinfusion,” Human Gene Therapy, vol. 9, no. 10, pp. 1397–1407, 1998. View at Google Scholar
  138. B. Fang, R. C. Eisensmith, and R. C. Eisensmith, “Gene therapy for hemophilia B: host immunosuppression prolongs the therapeutic effect of adenovirus-mediated factor IX expression,” Human Gene Therapy, vol. 6, no. 8, pp. 1039–1044, 1995. View at Google Scholar · View at Scopus
  139. G. P. Niemeyer, R. W. Herzog, and R. W. Herzog, “Long-term correction of inhibitor-prone hemophilia B dogs treated with liver-directed AAV2-mediated factor IX gene therapy,” Blood, vol. 113, no. 4, pp. 797–806, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  140. M. A. Kay and K. High, “Gene therapy for the hemophilias,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 9973–9975, 1999. View at Publisher · View at Google Scholar · View at Scopus
  141. S. Connelly, T. A. G. Smith, and T. A. G. Smith, “In vivo gene delivery and expression of physiological levels of functional human factor VIII in mice,” Human Gene Therapy, vol. 6, no. 2, pp. 185–193, 1995. View at Google Scholar · View at Scopus
  142. M. K. L. Chuah, T. Vandendriessche, and R. A. Morgan, “Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A,” Human Gene Therapy, vol. 6, no. 11, pp. 1363–1377, 1995. View at Google Scholar · View at Scopus
  143. D. L. Eaton, P. E. Hass, and L. Riddle, “Characterization of recombinant human factor VIII,” Journal of Biological Chemistry, vol. 262, no. 7, pp. 3285–3290, 1987. View at Google Scholar · View at Scopus
  144. J. J. Toole et al., “A large region (approximately equal to 95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 83, no. 16, pp. 5939–5942, 1986. View at Google Scholar
  145. D. L. Eaton, W. I. Wood, and W. I. Wood, “Construction and characterization of an active factor VIII variant lacking the central one-third of the molecule,” Biochemistry, vol. 25, no. 26, pp. 8343–8347, 1986. View at Google Scholar · View at Scopus
  146. Y. Yang and J. M. Wilson, “Clearance of adenovirus-infected hepatocytes by MHC class I-restricted CD4+ CTLs in vivo,” Journal of Immunology, vol. 155, no. 5, pp. 2564–2570, 1995. View at Google Scholar · View at Scopus
  147. S. Connelly, J. M. Gardner, R. M. Lyons, A. McClelland, and M. Kaleko, “Sustained expression of therapeutic levels of human factor VIII in mice,” Blood, vol. 87, no. 11, pp. 4671–4677, 1996. View at Google Scholar · View at Scopus
  148. C. Balagué, J. Zhou, and J. Zhou, “Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector,” Blood, vol. 95, no. 3, pp. 820–828, 2000. View at Google Scholar · View at Scopus
  149. S. Connelly, J. Mount, A. Mauser, J. M. Gardner, M. Kaleko, A. McClelland, and C. D. Lothrop Jr., “Complete short-term correction of canine hemophilia A by in vivo gene therapy,” Blood, vol. 88, no. 10, pp. 3846–3853, 1996. View at Google Scholar · View at Scopus
  150. J. L. Andrews, P. S. Shirley, and P. S. Shirley, “Evaluation of the duration of human factor VIII expression in nonhuman primates after systemic delivery of an adenoviral vector,” Human Gene Therapy, vol. 13, no. 11, pp. 1331–1336, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  151. B. D. Brown, C. X. Shi, S. Powell, D. Hurlbut, F. L. Graham, and D. Lillicrap, “Helper-dependent adenoviral vectors mediate therapeutic factor VIII expression for several months with minimal accompanying toxicity in a canine model of severe hemophilia A,” Blood, vol. 103, no. 3, pp. 804–810, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  152. J. L. Andrews, M. J. Kadan, M. I. Gorziglia, M. Kaleko, and S. Connelly, “Generation and characterization of E1/E2a/E3/E4-deficient adenoviral vectors encoding human factor VIII,” Molecular Therapy, vol. 3, no. 3, pp. 329–336, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  153. R. C. Hoeben, R. C. M. Van Der Jagt, and R. C. M. Van Der Jagt, “Expression of functional factor VIII in primary human skin fibroblasts after retrovirus-mediated gene transfer,” Journal of Biological Chemistry, vol. 265, no. 13, pp. 7318–7323, 1990. View at Google Scholar · View at Scopus
  154. D. I. Israel and R. J. Kaufman, “Retroviral-mediated transfer and amplification of a functional human factor VIII gene,” Blood, vol. 75, no. 5, pp. 1074–1080, 1990. View at Google Scholar · View at Scopus
  155. M. K. L. Chuah, H. Brems, V. Vanslembrouck, D. Collen, and T. VandenDriessche, “Bone marrow stromal cells as targets for gene therapy of hemophilia A,” Human Gene Therapy, vol. 9, no. 3, pp. 353–365, 1998. View at Google Scholar · View at Scopus
  156. F. J. Fallaux, R. C. Hoeben, S. J. Cramer, D. J. M. Van Den Wollenberg, E. Briët, H. Van Ormondt, and A. J. Van Der Eb, “The human clotting factor VIII cDNA contains an autonomously replicating sequence consensus- and matrix attachment region-like sequence that binds a nuclear factor, represses heterologous gene expression, and mediates the transcriptional effects of sodium butyrate,” Molecular and Cellular Biology, vol. 16, no. 8, pp. 4264–4272, 1996. View at Google Scholar · View at Scopus
  157. R. C. Hoeben, F. J. Fallaux, S. J. Cramer, D. J. M. Van den Wollenberg, H. Van Ormondt, E. Briet, and A. J. Van der Eb, “Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region,” Blood, vol. 85, no. 9, pp. 2447–2454, 1995. View at Google Scholar · View at Scopus
  158. D. D. Koeberl, C. L. Halbert, A. Krumm, and A. D. Miller, “Sequences within the coding regions of clotting factor VIII and CFTR block transcriptional elongation,” Human Gene Therapy, vol. 6, no. 4, pp. 469–479, 1995. View at Google Scholar · View at Scopus
  159. C. M. Lynch, D. I. Israel, R. J. Kaufman, and A. D. Miller, “Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production,” Human Gene Therapy, vol. 4, no. 3, pp. 259–272, 1993. View at Google Scholar · View at Scopus
  160. J. Byun, S.-H. Kim, J. Mook Kim, S. Shin Yu, P. D. Robbins, J. Yim, and S. Kim, “Analysis of the relative level of gene expression from different retroviral vectors used for gene therapy,” Gene Therapy, vol. 3, no. 9, pp. 780–788, 1996. View at Google Scholar · View at Scopus
  161. V. J. Dwarki, P. Belloni, and P. Belloni, “Gene therapy for hemophilia A: production of therapeutic levels of human factor VIII in vivo in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 4, pp. 1023–1027, 1995. View at Publisher · View at Google Scholar · View at Scopus
  162. T. VandenDriessche, V. Vanslembrouck, I. Goovaerts, H. Zwinnen, M.-L. Vanderhaeghen, D. Collen, and M. K. L. Chuah, “Long-term expression of human coagulation factor VIII and correction of hemophilia A after in vivo retroviral gene transfer in factor VIII-deficient mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 18, pp. 10379–10384, 1999. View at Publisher · View at Google Scholar · View at Scopus
  163. C. S. Stein, Y. Kang, and Y. Kang, “In vivo treatment of hemophilia A and mucopolysaccharidosis type VII using nonprimate lentiviral vectors,” Molecular Therapy, vol. 3, no. 6, pp. 850–856, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  164. N. A. Kootstra, R. Matsumura, and I. M. Verma, “Efficient production of human FVIII in hemophilic mice using lentiviral vectors,” Molecular Therapy, vol. 7, no. 5, pp. 623–631, 2003. View at Publisher · View at Google Scholar · View at Scopus
  165. H. Chao, L. Sun, A. Bruce, X. Xiao, and C. E. Walsh, “Expression of human factor VIII by splicing between dimerized AAV vectors,” Molecular Therapy, vol. 5, no. 6, pp. 716–722, 2002. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  166. C. D. Scallan, D. Lillicrap, and D. Lillicrap, “Sustained phenotypic correction of canine hemophilia A using an adeno-associated viral vector,” Blood, vol. 102, no. 6, pp. 2031–2037, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  167. S. Youjin and Y. Jun, “The treatment of hemophilia A: from protein replacement to AAV-mediated gene therapy,” Biotechnology Letters, vol. 31, no. 3, pp. 321–328, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  168. D. A. Roth, N. E. Tawa Jr., J. M. O'Brien, D. A. Treco, and R. F. Selden, “Nonviral transfer of the gene encoding coagulation factor viii in patients with severe hemophilia A,” New England Journal of Medicine, vol. 344, no. 23, pp. 1735–1742, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  169. J. S. Powell, M. V. Ragni, and M. V. Ragni , “Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion,” Blood, vol. 102, no. 6, pp. 2038–2045, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  170. M. K. L. Chuah, D. Collen, and T. VandenDriassche, “Clinical gene transfer studies for hemophilia A,” Seminars in Thrombosis and Hemostasis, vol. 30, no. 2, pp. 249–256, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  171. G. Kotzamanis and C. Huxley, “Recombining overlapping BACs into a single larger BAC,” BMC Biotechnology, vol. 4, article no. 1, 2004. View at Publisher · View at Google Scholar · View at PubMed
  172. V. Campuzano, L. Montermini, and L. Montermini, “Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion,” Science, vol. 271, no. 5254, pp. 1423–1427, 1996. View at Google Scholar · View at Scopus
  173. N. Sakamoto, P. D. Chastain, P. Parniewski, K. Ohshima, M. Pandolfo, J. D. Griffith, and R. D. Wells, “Sticky DNA: self-association properties of long GAA · TTC repeats in R · R · Y triplex structures from Friedreich's ataxia,” Molecular Cell, vol. 3, no. 4, pp. 465–475, 1999. View at Publisher · View at Google Scholar · View at Scopus
  174. P. I. Patel and G. Isaya, “Friedreich ataxia: from GAA triplet-repeat expansion to frataxin deficiency,” American Journal of Human Genetics, vol. 69, no. 1, pp. 15–24, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  175. V. Campuzano, L. Montermini, and L. Montermini, “Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes,” Human Molecular Genetics, vol. 6, no. 11, pp. 1771–1780, 1997. View at Publisher · View at Google Scholar · View at Scopus
  176. M. Babcock, D. De Silva, and D. De Silva, “Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin,” Science, vol. 276, no. 5319, pp. 1709–1712, 1997. View at Publisher · View at Google Scholar · View at Scopus
  177. J. Adamec, F. Rusnak, W. G. Owen, S. Naylor, L. M. Benson, A. M. Gacy, and G. Isaya, “Iron-dependent self-assembly of recombinant yeast frataxin: implications for Friedreich ataxia,” American Journal of Human Genetics, vol. 67, no. 3, pp. 549–562, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  178. O. Stehling, H. Elsässer, B. Brückel, U. Mühlenhoff, and R. Lill, “Iron-sulfur protein maturation in human cells: evidence for a function of frataxin,” Human Molecular Genetics, vol. 13, no. 23, pp. 3007–3015, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  179. M. Ristow, M. F. Pfister, and M. F. Pfister, “Frataxin activates mitochondrial energy conversion and oxidative phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 22, pp. 12239–12243, 2000. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  180. H. Koutnikova, V. Campuzano, F. Foury, P. Dollé, O. Cazzalini, and M. Koenig, “Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin,” Nature Genetics, vol. 16, no. 4, pp. 345–351, 1997. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  181. M. Cossée, H. Puccio, and H. Puccio, “Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation,” Human Molecular Genetics, vol. 9, no. 8, pp. 1219–1226, 2000. View at Google Scholar · View at Scopus
  182. H. Puccio, D. Simon, and D. Simon, “Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits,” Nature Genetics, vol. 27, no. 2, pp. 181–186, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  183. D. Simon, H. Seznec, and H. Seznec, “Friedreich ataxia mouse models with progressive cerebellar and sensory ataxia reveal autophagic neurodegeneration in dorsal root ganglia,” Journal of Neuroscience, vol. 24, no. 8, pp. 1987–1995, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  184. C. J. Miranda, M. M. Santos, and M. M. Santos, “Frataxin knockin mouse,” FEBS Letters, vol. 512, no. 1–3, pp. 291–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  185. S. Al-Mahdawi, R. M. Pinto, and R. M. Pinto, “GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology,” Genomics, vol. 88, no. 5, pp. 580–590, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  186. M. Pandolfo, “Drug insight: antioxidant therapy in inherited ataxias,” Nature Clinical Practice Neurology, vol. 4, no. 2, pp. 86–96, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  187. F. Acquaviva, I. Castaldo, and I. Castaldo, “Recombinant human erythropoietin increases frataxin protein expression without increasing mRNA expression,” Cerebellum, vol. 7, no. 3, pp. 360–365, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  188. S. Boesch, B. Sturm, S. Hering, H. Goldenberg, W. Poewe, and B. Scheiber-Mojdehkar, “Friedreich's ataxia: clinical pilot trial with recombinant human erythropoietin,” Annals of Neurology, vol. 62, no. 5, pp. 521–524, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  189. D. Herman, K. Jenssen, R. Burnett, E. Soragni, S. L. Perlman, and J. M. Gottesfeld, “Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia,” Nature Chemical Biology, vol. 2, no. 10, pp. 551–558, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  190. M. Rai, “HDAC inhibitors correct frataxin deficiency in a Friedreich ataxia mouse model,” PLoS One, vol. 3, no. 4, article no. e1958, 2008. View at Google Scholar
  191. L. Pianese, M. Turano, and M. Turano, “Real time PCR quantification of frataxin mRNA in the peripheral blood leucocytes of Friedreich ataxia patients and carriers,” Journal of Neurology, Neurosurgery and Psychiatry, vol. 75, no. 7, pp. 1061–1063, 2004. View at Publisher · View at Google Scholar · View at Scopus
  192. J. Fleming, A. Spinoulas, and A. Spinoulas, “Partial correction of sensitivity to oxidant stress in Friedreich ataxia patient fibroblasts by frataxin-encoding adeno-associated virus and lentivirus vectors,” Human Gene Therapy, vol. 16, no. 8, pp. 947–956, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  193. F. Lim, G. M. Palomo, C. Mauritz, A. Giménez-Cassina, B. Illana, F. Wandosell, and J. Díaz-Nido, “Functional recovery in a Friedreich's ataxia mouse model by frataxin gene transfer using an HSV-1 amplicon vector,” Molecular Therapy, vol. 15, no. 6, pp. 1072–1078, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  194. S. Gomez-Sebastian, A. Gimenez-Cassina, J. Diaz-Nido, F. Lim, and R. Wade-Martins, “Infectious delivery and expression of a 135kb human FRDA genomic DNA locus complements friedreich's ataxia deficiency in human cells,” Molecular Therapy, vol. 15, no. 2, pp. 248–254, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  195. R. Wade-Martins, E. R. Smith, E. Tyminski, E. A. Chiocca, and Y. Saeki, “An infectious transfer and expression system for genomic DNA loci in human and mouse cells,” Nature Biotechnology, vol. 19, no. 11, pp. 1067–1070, 2001. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  196. J. C. Glorioso and D. J. Fink, “Herpes vector-mediated gene transfer in the treatment of chronic pain,” Molecular Therapy, vol. 17, no. 1, pp. 13–18, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus