Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 673513, 11 pages
http://dx.doi.org/10.1155/2010/673513
Research Article

Telomere Attrition Occurs during Ex Vivo Expansion of Human Dental Pulp Stem Cells

1Department of Histology and Embryology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic
2Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Simkova 870, 500 38 Hradec Kralove, Czech Republic
3Department of Dentistry, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Sokolska 581, 500 05 Hradec Kralove, Czech Republic
4Laboratory of Molecular Pathology, Faculty of Medicine, Palacký University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
5Department of Clinical Immunology and Allergology, Faculty of Medicine in Hradec Kralove, Charles University in Prague, Sokolska 581, 500 05 Hradec Kralove, Czech Republic

Received 4 May 2010; Revised 5 August 2010; Accepted 31 August 2010

Academic Editor: Manoor Prakash Hande

Copyright © 2010 Jaroslav Mokry et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Evans and M. H. Kaufman, “Establishment in culture of pluripotential cells from mouse embryos,” Nature, vol. 292, no. 5819, pp. 154–156, 1981. View at Google Scholar · View at Scopus
  2. N. Strelchenko, O. Verlinsky, V. Kukharenko, and Y. Verlinsky, “Morula-derived human embryonic stem cells,” Reproductive BioMedicine Online, vol. 9, no. 6, pp. 623–629, 2004. View at Google Scholar · View at Scopus
  3. G. Kögler, S. Sensken, J. A. Airey et al., “A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential,” Journal of Experimental Medicine, vol. 200, no. 2, pp. 123–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. B. A. Reynolds, W. Tetzlaff, and S. Weiss, “A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes,” Journal of Neuroscience, vol. 12, no. 11, pp. 4565–4574, 1992. View at Google Scholar · View at Scopus
  5. D. J. Prockop, “Marrow stromal cells as stem cells for nonhematopoietic tissues,” Science, vol. 276, no. 5309, pp. 71–74, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. A. P. Beltrami, L. Barlucchi, D. Torella et al., “Adult cardiac stem cells are multipotent and support myocardial regeneration,” Cell, vol. 114, no. 6, pp. 763–776, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Gronthos, M. Mankani, J. Brahim, P. G. Robey, and S. Shi, “Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13625–13630, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Suchanek, T. Soukup, R. Ivancaková et al., “Human dental pulp stem cells—isolation and long term cultivation,” Acta Medica (Hradec Kralove), vol. 50, no. 3, pp. 195–201, 2007. View at Google Scholar · View at Scopus
  9. A. H.-C. Huang, B. R. Snyder, P.-H. Cheng, and A. W. S. Chan, “Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice,” Stem Cells, vol. 26, no. 10, pp. 2654–2663, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. J. A. Knoblich, “Mechanisms of asymmetric cell division during animal development,” Current Opinion in Cell Biology, vol. 9, no. 6, pp. 833–841, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. Y.-Y. Jang and S. J. Sharkis, “A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche,” Blood, vol. 110, no. 8, pp. 3056–3063, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Ramalho-Santos, S. Yoon, Y. Matsuzaki, R. C. Mulligan, and D. A. Melton, “"Stemness": transcriptional profiling of embryonic and adult stem cells,” Science, vol. 298, no. 5593, pp. 597–600, 2002. View at Publisher · View at Google Scholar · View at Scopus
  13. C. W. Greider, “Telomere length regulation,” Annual Review of Biochemistry, vol. 65, pp. 337–365, 1996. View at Google Scholar · View at Scopus
  14. J. M. Y. Wong and K. Collins, “Telomere maintenance and disease,” Lancet, vol. 362, no. 9388, pp. 983–988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. R. C. Allsopp, G. B. Morin, R. DePinho, C. B. Harley, and I. L. Weissman, “Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation,” Blood, vol. 102, no. 2, pp. 517–520, 2003. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Flores, M. L. Cayuela, and M. A. Blasco, “Effects of telomerase and telomere length on epidermal stem cell behavior,” Science, vol. 309, no. 5738, pp. 1253–1256, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. R. M. Marion, K. Strati, H. Li et al., “Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells,” Cell Stem Cell, vol. 4, no. 2, pp. 141–154, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. W. Sonoyama, Y. Liu, D. Fang et al., “Mesenchymal stem cell-mediated functional tooth regeneration in Swine,” PLoS ONE, vol. 1, no. 1, article no. e79, 2006. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Suchanek, T. Soukup, B. Visek, R. Ivancakova, L. Kucerova, and J. Mokry, “Dental pulp stem cells and their characterization,” Biomedical Papers, vol. 153, no. 1, pp. 31–36, 2009. View at Google Scholar · View at Scopus
  20. R. M. Cawthon, “Telomere measurement by quantitative PCR,” Nucleic Acids Research, vol. 30, no. 10, article no. e47, 2002. View at Google Scholar · View at Scopus
  21. A. Asai, Y. Oshima, Y. Yamamoto et al., “A novel telomerase template antagonist (GRN163) as a potential anticancer agent,” Cancer Research, vol. 63, no. 14, pp. 3931–3939, 2003. View at Google Scholar · View at Scopus
  22. J. Karbanova, T. Soukup, J. Suchanek, R. Pytlik, D. Corbeil, and J. Mokry, “Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium,” Cells Tissues Organs. In press. View at Publisher · View at Google Scholar
  23. Y. Kageyama, S. Kamata, J. Yonese, and H. Oshima, “Telomere length and telomerase activity in bladder and prostate cancer cell lines,” International Journal of Urology, vol. 4, no. 4, pp. 407–410, 1997. View at Google Scholar · View at Scopus
  24. S. Gronthos, J. Brahim, W. Li et al., “Stem cell properties of human dental pulp stem cells,” Journal of Dental Research, vol. 81, no. 8, pp. 531–535, 2002. View at Google Scholar · View at Scopus
  25. S. Batouli, M. Miura, J. Brahim et al., “Comparison of stem-cell-mediated osteogenesis and dentinogenesis,” Journal of Dental Research, vol. 82, no. 12, pp. 976–981, 2003. View at Google Scholar · View at Scopus
  26. F. Santagati and F. M. Rijli, “Cranial neural crest and the building of the vertebrate head,” Nature Reviews Neuroscience, vol. 4, no. 10, pp. 806–818, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Billon, P. Iannarelli, M. C. Monteiro et al., “The generation of adipocytes by the neural crest,” Development, vol. 134, no. 12, pp. 2283–2292, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres shorten during ageing of human fibroblasts,” Nature, vol. 345, no. 6274, pp. 458–460, 1990. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Konishi, K. Lindholm, L.-B. Yang, R. Li, and Y. Shen, “Isolation of living neurons from human elderly brains using the immunomagnetic sorting DNA-linker system,” American Journal of Pathology, vol. 161, no. 5, pp. 1567–1576, 2002. View at Google Scholar · View at Scopus
  30. P. R. Crisostomo, T. A. Markel, M. Wang, T. Lahm, K. D. Lillemoe, and D. R. Meldrum, “In the adult mesenchymal stem cell population, source gender is a biologically relevant aspect of protective power,” Surgery, vol. 142, no. 2, pp. 215–221, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. K. Kyo, M. Takakura, T. Kanaya et al., “Estrogen activates telomerase,” Cancer Research, vol. 59, no. 23, pp. 5917–5921, 1999. View at Google Scholar · View at Scopus
  32. E. Pavesi, F. Avondo, A. Aspesi et al., “Analysis of telomeres in peripheral blood cells from patients with bone marrow failure,” Pediatric Blood and Cancer, vol. 53, no. 3, pp. 411–416, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. S. J. Morrison, K. R. Prowse, P. Ho, and I. L. Weissman, “Telomerase activity in hematopoietic cells is associated with self-renewal potential,” Immunity, vol. 5, no. 3, pp. 207–216, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Y. Dan, K. J. Riehle, C. Lazaro et al., “Isolation of multipotent progenitor cells from human fetal liver capable of differentiating into liver and mesenchymal lineages,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 26, pp. 9912–9917, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. E. Hiyama, K. Hiyama, N. Tatsumoto, T. Kodama, J. W. Shay, and T. Yokoyama, “Telomerase activity in human intestine,” International Journal of Oncology, vol. 9, no. 3, pp. 453–458, 1996. View at Google Scholar · View at Scopus
  36. L. S. Wright, K. R. Prowse, K. Wallace, M. H. K. Linskens, and C. N. Svendsen, “Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro,” Experimental Cell Research, vol. 312, no. 11, pp. 2107–2120, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. E. S. Epel, E. H. Blackburn, J. Lin et al., “Accelerated telomere shortening in response to life stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 49, pp. 17312–17315, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell, vol. 126, no. 4, pp. 663–676, 2006. View at Publisher · View at Google Scholar · View at Scopus