Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010, Article ID 759690, 12 pages
http://dx.doi.org/10.1155/2010/759690
Methodology Report

Enhanced MALDI-TOF MS Analysis of Phosphopeptides Using an Optimized DHAP/DAHC Matrix

1Proteomic Platform and National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
2Department of Biology, Graduate University of the Chinese Academy of Sciences, Beijing 100049, China

Received 30 June 2009; Revised 11 September 2009; Accepted 31 December 2009

Academic Editor: Kai Tang

Copyright © 2010 Junjie Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Posada and J. A. Cooper, “Molecular signal integration. Interplay between serine, threonine, and tyrosine phosphorylation,” Molecular Biology of the Cell, vol. 3, no. 6, pp. 583–592, 1992. View at Google Scholar
  2. T. Hunter, “Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling,” Cell, vol. 80, no. 2, pp. 225–236, 1995. View at Google Scholar · View at Scopus
  3. T. Hunter, “Signaling—2000 and beyond,” Cell, vol. 100, no. 1, pp. 113–127, 2000. View at Google Scholar · View at Scopus
  4. P. Cohen, “The regulation of protein function by multisite phosphorylation—a 25 year update,” Trends in Biochemical Sciences, vol. 25, no. 12, pp. 596–601, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Mukherji, “Phosphoproteomics in analyzing signaling pathways,” Expert Review of Proteomics, vol. 2, no. 1, pp. 117–128, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. T.-T. Yip and T. W. Hutchens, “Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry,” FEBS Letters, vol. 308, no. 2, pp. 149–153, 1992. View at Publisher · View at Google Scholar · View at Scopus
  7. A. G. Craig, C. A. Hoeger, C. L. Miller, T. Goedken, J. E. Rivier, and W. H. Fischer, “Monitoring protein kinase and phosphatase reactions with matrix-assisted laser desorption/ionization mass spectrometry and capillary zone electrophoresis: comparison of the detection efficiency of peptide-phosphopeptide mixtures,” Biological Mass Spectrometry, vol. 23, no. 8, pp. 519–528, 1994. View at Publisher · View at Google Scholar · View at Scopus
  8. P.-C. Liao, J. Leykam, P. C. Andrews, D. A. Gage, and J. Allison, “An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry,” Analytical Biochemistry, vol. 219, no. 1, pp. 9–20, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Annan and S. A. Carr, “Phosphopeptide analysis by matrix-assisted laser desorption time-of-flight mass spectrometry,” Analytical Chemistry, vol. 68, no. 19, pp. 3413–3421, 1996. View at Publisher · View at Google Scholar · View at Scopus
  10. S. A. Carr, M. J. Huddleston, and R. S. Annan, “Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry,” Analytical Biochemistry, vol. 239, no. 2, pp. 180–192, 1996. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Busman, K. L. Schey, J. E. Oatis Jr., and D. R. Knapp, “Identification of phosphorylation sites in phosphopeptides by positive and negative mode electrospray ionization-tandem mass spectrometry,” Journal of the American Society for Mass Spectrometry, vol. 7, no. 3, pp. 243–249, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. R. S. Annan and S. A. Carr, “The essential role of mass spectrometry in characterizing protein structure: mapping posttranslational modifications,” Protein Journal, vol. 16, no. 5, pp. 391–402, 1997. View at Google Scholar · View at Scopus
  13. K. Stühler and H. E. Meyer, “MALDI: more than peptide mass fingerprints,” Current Opinion in Molecular Therapeutics, vol. 6, no. 3, pp. 239–248, 2004. View at Google Scholar · View at Scopus
  14. M. Khan, H. Takasaki, and S. Komatsu, “Comprehensive phosphoproteome analysis in rice and identification of phosphoproteins responsive to different hormones/stresses,” Journal of Proteome Research, vol. 4, no. 5, pp. 1592–1599, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Yan, L. Li, Y. Tao et al., “Identification of novel phosphoproteins in signaling pathways triggered by latent membrane protein 1 using functional proteomics technology,” Proteomics, vol. 6, no. 6, pp. 1810–1821, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Steen, J. A. Jebanathirajah, J. Rush, N. Morrice, and M. W. Kirschner, “Phosphorylation analysis by mass spectrometry: myths, facts, and the consequences for qualitative and quantitative measurements,” Molecular and Cellular Proteomics, vol. 5, no. 1, pp. 172–181, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Cohen, “The role of protein phosphorylation in human health and disease,” European Journal of Biochemistry, vol. 268, no. 19, pp. 5001–5010, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. D. Arnott, M. A. Gawinowicz, R. A. Grant et al., “ABRF-PRG03: phosphorylation site determination,” Journal of Biomolecular Techniques, vol. 14, no. 3, pp. 205–215, 2003. View at Google Scholar · View at Scopus
  19. S. Kjellström and O. N. Jensen, “Phosphoric acid as a matrix additive for MALDI MS analysis of phosphopeptides and phosphoproteins,” Analytical Chemistry, vol. 76, no. 17, pp. 5109–5117, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Tholey, “Ionic liquid matrices with phosphoric acid as matrix additive for the facilitated analysis of phosphopeptides by matrix-assisted laser desorption/ionization mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 20, no. 11, pp. 1761–1768, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. H. Zhou, S. Xu, M. Ye et al., “Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis,” Journal of Proteome Research, vol. 5, no. 9, pp. 2431–2437, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. X. Yang, H. Wu, T. Kobayashi, R. J. Solaro, and R. B. Van Breemen, “Enhanced ionization of phosphorylated peptides during MALDI TOF mass spectrometry,” Analytical Chemistry, vol. 76, no. 5, pp. 1532–1536, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. J. M. Asara and J. Allison, “Enhanced detection of phosphopeptides in matrix-assisted laser desorption/ionization mass spectrometry using ammonium salts,” Journal of the American Society for Mass Spectrometry, vol. 10, no. 1, pp. 35–44, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. J. J. Gorman, B. L. Ferguson, and T. B. Nguyen, “Use of 2,6-dihydroxyacetophenone for analysis of fragile peptides, disulphide bonding and small proteins by matrix-assisted laser desorption/ionization,” Rapid Communications in Mass Spectrometry, vol. 10, no. 5, pp. 529–536, 1996. View at Google Scholar
  25. T. Nabetani, K. Miyazaki, Y. Tabuse, and A. Tsugita, “Analysis of acidic peptides with a matrix-assisted laser desorption/ionization mass spectrometry using positive and negative ion modes with additive monoammonium phosphate,” Proteomics, vol. 6, no. 16, pp. 4456–4465, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-F. Xu, Y. Lu, J. Ma, M. Mohammadi, and T. A. Neubert, “Identification of phosphopeptides by MALDI Q-TOF MS in positive and negative ion modes after methyl esterification,” Molecular and Cellular Proteomics, vol. 4, no. 6, pp. 809–818, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C.-F. Xu, H. Wang, D. Li, X.-P. Kong, and T. A. Neubert, “Selective enrichment and fractionation of phosphopeptides from peptide mixtures by isoelectric focusing after methyl esterification,” Analytical Chemistry, vol. 79, no. 5, pp. 2007–2014, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. V. J. Nesatyy, A. Dacanay, J. F. Kelly, and N. W. Ross, “Microwave-assisted protein staining: mass spectrometry compatible methods for rapid protein visualisation,” Rapid Communications in Mass Spectrometry, vol. 16, no. 4, pp. 272–280, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. L. Cohen and B. T. Chait, “Influence of matrix solution conditions on the MALDI-MS analysis of peptides and proteins,” Analytical Chemistry, vol. 68, no. 1, pp. 31–37, 1996. View at Publisher · View at Google Scholar · View at Scopus
  30. T. E. Thingholm, T. J. D. Jørgensen, O. L. Jensen, and M. R. Larsen, “Highly selective enrichment of phosphorylated peptides using titanium dioxide,” Nature Protocols, vol. 1, no. 4, pp. 1929–1935, 2006. View at Publisher · View at Google Scholar · View at Scopus
  31. G. Luo, A. Gruhler, Y. Liu, O. N. Jensen, and R. C. Dickson, “The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover,” Journal of Biological Chemistry, vol. 283, no. 16, pp. 10433–10444, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Krintel, P. Osmark, M. R. Larsen, S. Resjö, D. T. Logan, and C. Holm, “Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates,” PLoS ONE, vol. 3, no. 11, article e3756, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. P. J. Kennelly and E. G. Krebs, “Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases,” Journal of Biological Chemistry, vol. 266, no. 24, pp. 15555–15558, 1991. View at Google Scholar · View at Scopus
  34. L. M. Stevenson-Lindert, P. Fowler, and J. Lew, “Substrate specificity of CDK2-cyclin A: what is optimal?” Journal of Biological Chemistry, vol. 278, no. 51, pp. 50956–50960, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. Z. Songyang, S. Blechner, N. Hoagland, M. F. Hoekstra, H. Piwnica-Worms, and L. C. Cantley, “Use of an oriented peptide library to determine the optimal substrates of protein kinases,” Current Biology, vol. 4, no. 11, pp. 973–982, 1994. View at Google Scholar · View at Scopus