Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 838530, 8 pages
Research Article

Dynamic Strength of Titin's Z-Disk End

1Department of Biophysics, Faculty of Medicine, University of Pécs, Szigeti ut 12., Pécs 7624, Hungary
2Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Tűzoltó u. 37-47., Budapest 1094, Hungary

Received 7 December 2009; Accepted 11 February 2010

Academic Editor: Henk L. M. Granzier

Copyright © 2010 Veronika Kollár et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Titin is a giant filamentous protein traversing the half sarcomere of striated muscle with putative functions as diverse as providing structural template, generating elastic response, and sensing and relaying mechanical information. The Z-disk region of titin, which corresponds to the N-terminal end of the molecule, has been thought to be a hot spot for mechanosensing while also serving as anchorage for its sarcomeric attachment. Understanding the mechanics of titin's Z-disk region, particularly under the effect of binding proteins, is of great interest. Here we briefly review recent findings on the structure, molecular associations, and mechanics of titin's Z-disk region. In addition, we report experimental results on the dynamic strength of titin's Z1Z2 domains measured by nanomechanical manipulation of the chemical dimer of a recombinant protein fragment.