Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2010 (2010), Article ID 856842, 8 pages
http://dx.doi.org/10.1155/2010/856842
Methodology Report

IMMUNOCAT—A Data Management System for Epitope Mapping Studies

Division of Vaccine Discovery, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA

Received 30 November 2009; Accepted 7 March 2010

Academic Editor: Anne S. De Groot

Copyright © 2010 Jo L. Chung et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Grandi, “Antibacterial vaccine design using genomics and proteomics,” Trends in Biotechnology, vol. 19, no. 5, pp. 181–188, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. P. A. Cullen and C. E. Cameron, “Progress towards an effective syphilis vaccine: the past, present and future,” Expert Review of Vaccines, vol. 5, no. 1, pp. 67–80, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Rollenhagen, M. Sörensen, K. Rizos, R. Hurvitz, and D. Bumann, “Antigen selection based on expression levels during infection facilitates vaccine development for an intracellular phathogen,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 23, pp. 8739–8744, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. M. Moutaftsi, S. Salek-Ardakani, M. Croft et al., “Correlates of protection efficacy induced by vaccinia virus-specific CD8+ T-cell epitopes in the murine intranasal challenge model,” European Journal of Immunology, vol. 39, no. 3, pp. 717–722, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. D. Campbell, R. H. DeKruyff, and D. T. Umetsu, “Allergen immunotherapy: novel approaches in the management of allergic diseases and asthma,” Clinical Immunology, vol. 97, no. 3, pp. 193–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Valenta and D. Kraft, “From allergen structure to new forms of allergen-specific immunotherapy,” Current Opinion in Immunology, vol. 14, no. 6, pp. 718–727, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. J. A. Berzofsky, M. Terabe, S. Oh et al., “Progress on new vaccine strategies for the immunotherapy and prevention of cancer,” Journal of Clinical Investigation, vol. 113, no. 11, pp. 1515–1525, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Offringa, S. H. Van Der Burg, F. Ossendorp, R. E. Toes, and C. J. Melief, “Design and evaluation of antigen-specific vaccination strategies against cancer,” Current Opinion in Immunology, vol. 12, no. 5, pp. 576–582, 2000. View at Publisher · View at Google Scholar · View at Scopus
  9. A. S. De Groot, H. Sbai, C. S. Aubin, J. McMurry, and W. Martin, “Immuno-informatics: mining genomes for vaccine components,” Immunology and Cell Biology, vol. 80, no. 3, pp. 255–269, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. A. S. De Groot, M. Ardito, E. M. McClaine, L. Moise, and W. D. Martin, “Immunoinformatic comparison of T-cell epitopes contained in novel swine-origin influenza A (H1N1) virus with epitopes in 2008-2009 conventional influenza vaccine,” Vaccine, vol. 27, no. 42, pp. 5740–5747, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. J. A. Greenbaum, M. F. Kotturi, Y. Kim et al., “Pre-existing immunity against swine-origin H1N1 influenza viruses in the general human population,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 48, pp. 20365–20370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Moutaftsi, H.-H. Bui, B. Peters et al., “Vaccinia virus-specific CD4+ T cell responses target a set of antigens largely distinct from those targeted by CD8+ T cell responses,” Journal of Immunology, vol. 178, no. 11, pp. 6814–6820, 2007. View at Google Scholar · View at Scopus
  13. M. Moutaftsi, B. Peters, V. Pasquetto et al., “A consensus epitope prediction approach identifies the breadth of murine TCD8+-cell responses to vaccinia virus,” Nature Biotechnology, vol. 24, no. 7, pp. 817–819, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. V. Pasquetto, H.-H. Bui, R. Giannino et al., “HLA-A*0201, HLA-A*1101, and HLA-B*0702 transgenic mice recognize numerous poxvirus determinants from a wide variety of viral gene products,” Journal of Immunology, vol. 175, no. 8, pp. 5504–5515, 2005. View at Google Scholar · View at Scopus
  15. C. Oseroff, F. Kos, H.-H. Bui et al., “HLA class I-restricted responses to vaccinia recognize a broad array of proteins mainly involved in virulence and viral gene regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 39, pp. 13980–13985, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Botten, J. Alexander, V. Pasquetto et al., “Identification of protective Lassa virus epitopes that are restricted by HLA-A2,” Journal of Virology, vol. 80, no. 17, pp. 8351–8361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. J. Botten, J. L. Whitton, P. Barrowman et al., “HLA-A2-restricted protection against lethal lymphocytic choriomeningitis,” Journal of Virology, vol. 81, no. 5, pp. 2307–2317, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. F. Kotturi, B. Peters, F. Buendia-Laysa Jr. et al., “The CD8+T-cell response to lymphocytic choriomeningitis virus involves the L antigen: uncovering new tricks for an old virus,” Journal of Virology, vol. 81, no. 10, pp. 4928–4940, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Sette and B. Peters, “Immune epitope mapping in the post-genomic era: lessons for vaccine development,” Current Opinion in Immunology, vol. 19, no. 1, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. C. Czerkinsky, L. A. Nilsson, and H. Nygren, “A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 109–121, 1983. View at Google Scholar · View at Scopus
  21. A. Sette, A. Vitiello, B. Reherman et al., “The relationship between class I binding affinity and immunogenicity of potential cytotoxic T cell epitopes,” Journal of Immunology, vol. 153, no. 12, pp. 5586–5592, 1994. View at Google Scholar · View at Scopus
  22. J. Klein, Natural History of the Major Histocompatibility Complex, John Wiley & Sons, New York, NY, USA, 1986.
  23. G. Virella, Medical Immunology, Marcel Dekker, New York, NY, USA, 5th edition, 2001.
  24. J. B. Henry, Clinical Diagnosis and Management by Laboratory Methods, W.B. Saunders, Philadelphia, Pa, USA, 20th edition, 2001.
  25. V. Vengelen-Tyler and American Association of Blood Banks, Technical Manual, American Association of Blood Banks, Bethesda, Md, USA, 12th edition, 1996.
  26. J. Sidney, S. Southwood, C. Oseroff, M. F. del Guercio, A. Sette, and H. M. Grey, “Measurement of MHC/peptide interactions by gel filtration,” Current Protocols in Immunology, chapter 18, unit 18.3, 2001. View at Google Scholar
  27. J. Sidney, E. Assarsson, C. Moore et al., “Quantitative peptide binding motifs for 19 human and mouse MHC class i molecules derived using positional scanning combinatorial peptide libraries,” Immunome Research, vol. 4, no. 1, article 2, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Cheng and W. H. Prusoff, “Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction,” Biochemical Pharmacology, vol. 22, no. 23, pp. 3099–3108, 1973. View at Publisher · View at Google Scholar · View at Scopus
  29. T. O. Consortium, “Modeling biomedical experimental processes with OBI,” in Proceedings of the the 12th Annual Bio-Ontologies Meeting (ISMB '09), p. 41, 2009.
  30. Y. He, “VO: vaccine ontology,” in Nature Precedings, 2009. View at Google Scholar
  31. B. Peters and A. Sette, “Integrating epitope data into the emerging web of biomedical knowledge resources,” Nature Reviews Immunology, vol. 7, no. 6, pp. 485–490, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. B. Peters, J. Sidney, P. Bourne et al., “The immune epitope database and analysis resource: from vision to blueprint,” PLoS Biology, vol. 3, no. 3, article e91, 2005. View at Google Scholar