Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 135034, 10 pages
http://dx.doi.org/10.1155/2011/135034
Research Article

The Effects of Fractions from Shiitake Mushroom on Composition and Cariogenicity of Dental Plaque Microcosms in an In Vitro Caries Model

1Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
2Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
3Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
4Microbiology Section, Department of Pathology and Diagnostics, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
5DIPTERIS, University of Genoa, Corso Europa 26, 16132 Genoa, Italy
6Department of Cariology, Institute of Odontology at Sahlgrenska Academy, University of Gothenburg, P.O. Box 450, 405 30 Göteborg, Sweden

Received 14 June 2011; Accepted 14 July 2011

Academic Editor: Itzhak Ofek

Copyright © 2011 Egija Zaura et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Spratt et al., “Evaluation of plant and fungal extracts for their anti-gingivitis and anti-caries activity,” Journal of Biomedicine and Biotechnology. In press.
  2. M. Daglia et al., “Vegetable food components with potential activity on the development of microbial oral diseases,” Journal of Biomedicine and Biotechnology. In press.
  3. N. Shouji, K. Takada, K. Fukushima, and M. Hirasawa, “Anticaries effect of a component from shiitake (an Edible Mushroom),” Caries Research, vol. 34, no. 1, pp. 94–98, 2000. View at Google Scholar · View at Scopus
  4. M. E. Venturini, C. S. Rivera, C. Gonzalez, and D. Blanco, “Antimicrobial activity of extracts of edible wild and cultivated mushrooms against foodborne bacterial strains,” Journal of Food Protection, vol. 71, no. 8, pp. 1701–1706, 2008. View at Google Scholar · View at Scopus
  5. C. J. van Nevel, J. A. Decuypere, N. Dierick, and K. Molly, “The influence of lentinus edodes (Shiitake mushroom) preparations on bacteriological and morphological aspects of the small intestine in piglets,” Archives of Animal Nutrition, vol. 57, no. 6, pp. 399–412, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Deng and J. M. ten Cate, “Demineralization of dentin by Streptococcus mutans biofilms grown in the constant depth film fermentor,” Caries Research, vol. 38, no. 1, pp. 54–61, 2004. View at Publisher · View at Google Scholar · View at Scopus
  7. D. M. Deng, C. van Loveren, and J. M. ten Cate, “Caries-preventive agents induce remineralization of dentin in a biofilm model,” Caries Research, vol. 39, no. 3, pp. 216–223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Pratten, “Growing oral biofilms in a constant depth film fermentor (CDFF),” Current Protocols in Microbiology, vol. 6, Unit 1B.5.1-1B.5.18, 2007. View at Google Scholar · View at Scopus
  9. A. J. McBain, R. G. Bartolo, C. E. Catrenich, D. Charbonneau, R. G. Ledder, and P. Gilbert, “Growth and molecular characterization of dental plaque microcosms,” Journal of Applied Microbiology, vol. 94, no. 4, pp. 655–664, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. M. D. Lagerweij, E. de Josselin de Jong, and J. M. ten Cate, “The video camera compared with the densitometer as a scanning device for microradiography,” Caries Research, vol. 28, no. 5, pp. 353–362, 1994. View at Google Scholar · View at Scopus
  11. L. Wong and C. H. Sissons, “A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva,” Archives of Oral Biology, vol. 46, no. 6, pp. 477–486, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. V. A. M. Gerardu, C. van Loveren, M. Heijnsbroek, M. J. Buijs, G. A. van der Weijden, and J. M. ten Cate, “Effects of various rinsing protocols after the use of amine fluoride/stannous fluoride toothpaste on the acid production of dental plaque and tongue flora,” Caries Research, vol. 40, no. 3, pp. 245–250, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. J. J. M. Damen, M. J. Buijs, and J. M. ten Cate, “Acidogenicity of buccal plaque after a single rinse with amine fluoride-stannous fluoride mouthrinse solution,” Caries Research, vol. 36, no. 1, pp. 53–57, 2002. View at Google Scholar · View at Scopus
  14. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Google Scholar · View at Scopus
  15. E. Zaura, M. J. Buijs, and J. M. ten Cate, “Effects of ozone and sodium hypochlorite on caries-like lesions in dentin,” Caries Research, vol. 41, no. 6, pp. 489–492, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. L. Ciric, J. Pratten, M. Wilson, and D. Spratt, “Development of a novel multi-triplex qPCR method for the assessment of bacterial community structure in oral populations,” Environmental Microbiology Reports, vol. 2, no. 6, pp. 770–774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. R. I. Griffiths, A. S. Whiteley, A. G. O'Donnell, and M. J. Bailey, “Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition,” Applied and Environmental Microbiology, vol. 66, no. 12, pp. 5488–5491, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. J. W. Wimpenny, “Introduction,” in Handbook of Laboratory Model Systems for Microbial Ecosystems, J. W. Wimpenny, Ed., CRC Press, Boca Raton, Fla, USA, 1988. View at Google Scholar
  19. P. D. Marsh, “Antimicrobial strategies in the prevention of dental caries,” Caries Research, vol. 27, pp. 72–76, 1993. View at Google Scholar · View at Scopus
  20. R. V. Oppermann, “Effect of chlorhexidine on acidogenicity of dental plaque in vivo,” Scandinavian Journal of Dental Research, vol. 87, no. 4, pp. 302–308, 1979. View at Google Scholar · View at Scopus
  21. J. S. van der Hoeven, D. Cummins, M. J. Schaeken, and F. J. van der Ouderaa, “The effect of chlorhexidine and zinc/triclosan mouthrinses on the production of acids in dental plaque,” Caries Research, vol. 27, no. 4, pp. 298–302, 1993. View at Google Scholar · View at Scopus
  22. J. Pratten, P. Barnett, and M. Wilson, “Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3515–3519, 1998. View at Google Scholar · View at Scopus
  23. M. Wilson, H. Patel, and J. H. Noar, “Effect of chlorhexidine on multi-species biofilms,” Current Microbiology, vol. 36, no. 1, pp. 13–18, 1998. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Marsh and M. V. Martin, “The resident oral microflora,” in Oral Microbiology, P. Marsh and M. V. Martin, Eds., pp. 24–44, Elsevier, New York, NY, USA, 5th edition, 2009. View at Google Scholar
  25. P. E. Kolenbrander, R. N. Andersen, D. S. Blehert, P. G. Egland, J. S. Foster, and R. J. Palmer, “Communication among oral bacteria,” Microbiology and Molecular Biology Reviews, vol. 66, no. 3, pp. 486–505, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Otto, “Uncoupling of growth and acid production in Streptococcus cremoris,” Archives of Microbiology, vol. 140, no. 2-3, pp. 225–230, 1984. View at Google Scholar · View at Scopus
  27. J. C. Senez, “Some considerations on the energetics of bacterial growth,” Bacteriological Reviews, vol. 26, pp. 95–107, 1962. View at Google Scholar
  28. K. W. Turner and T. D. Thomas, “Uncoupling of growth and acid production in lactic streptococci,” New Zealand Journal od Dairy Science and Technology, vol. 10, pp. 162–167, 1976. View at Google Scholar