Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 141207, 8 pages
http://dx.doi.org/10.1155/2011/141207
Research Article

In Situ Biodiesel Production from Fast-Growing and High Oil Content Chlorella pyrenoidosa in Rice Straw Hydrolysate

1Key Laboratory of MOE for Microbial Metabolism and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
2Biomass Energy Research Center, Shanghai Jiao Tong University, Shanghai 200240, China

Received 14 October 2010; Accepted 22 December 2010

Academic Editor: Rodomiro Ortiz

Copyright © 2011 Penglin Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. Y. Chisti, “Biodiesel from microalgae,” Biotechnology Advances, vol. 25, no. 3, pp. 294–306, 2007. View at Publisher · View at Google Scholar
  2. V. Patil, K. -Q. Tran, and H. R. Giselrød, “Towards sustainable production of biofuels from microalgae,” International Journal of Molecular Sciences, vol. 9, no. 7, pp. 1188–1195, 2008. View at Publisher · View at Google Scholar
  3. J. O. B. Carioca, J. J. Hiluy Filho, M. R. L. V. Leal, and F. S. Macambira, “The hard choice for alternative biofuels to diesel in Brazil,” Biotechnology Advances, vol. 27, no. 6, pp. 1043–1050, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. EIA, “Gasoline and diesel fuel update,” March 2010, http://tonto.eia.doe.gov/oog/info/gdu/gasdiesel.asp.
  5. Y. Cheng, W. Zhou, C. Gao, K. Lan, Y. Gao, and Q. Wu, “Biodiesel production from Jerusalem artichoke (Helianthus Tuberosus L.) tuber by heterotrophic microalgae Chlorella protothecoides,” Journal of Chemical Technology and Biotechnology, vol. 84, no. 5, pp. 777–781, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. A. Wei, X. Zhang, D. Wei, G. U. Chen, Q. Wu, and S. T. Yang, “Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 11, pp. 1383–1389, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. Cheng, Y. Lu, C. Gao, and Q. Wu, “Alga-Based biodiesel production and optimization using sugar cane as the feedstock,” Energy and Fuels, vol. 23, no. 8, pp. 4166–4173, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Gao, Y. Zhai, Y. Ding, and Q. Wu, “Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides,” Applied Energy, vol. 87, no. 3, pp. 756–761, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Margaritis and P. Bajpai, “Continuous ethanol production from Jerusalem artichoke tubers. II. Use of immobilized cells of Kluyveromyces marxianus,” Biotechnology and Bioengineering, vol. 24, no. 7, pp. 1483–1493, 1982. View at Google Scholar · View at Scopus
  10. C. Martín and A. B. Thomsen, “Wet oxidation pretreatment of lignocellulosic residues of sugarcane, rice, cassava and peanuts for ethanol production,” Journal of Chemical Technology and Biotechnology, vol. 82, no. 2, pp. 174–181, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. E. Wyman, “Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power,” Biotechnology Progress, vol. 19, no. 2, pp. 254–262, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. FAO, “Global cereal production brief,” 2009, http://www.fao.org/docrep/012/ai484e/ai484e04.htm.
  13. A. Li, B. Antizar-Ladislao, and M. Khraisheh, “Bioconversion of municipal solid waste to glucose for bio-ethanol production,” Bioprocess and Biosystems Engineering, vol. 30, no. 3, pp. 189–196, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. Xu, X. Miao, and Q. Wu, “High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters,” Journal of Biotechnology, vol. 126, no. 4, pp. 499–507, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. X. Miao and Q. Wu, “Biodiesel production from heterotrophic microalgal oil,” Bioresource Technology, vol. 97, no. 6, pp. 841–846, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. K. Vijayaraghavan and K. Hemanathan, “Biodiesel production from freshwater algae,” Energy and Fuels, vol. 23, no. 11, pp. 5448–5453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. B. Johnson and Z. Wen, “Production of biodiesel fuel from the microalga schizochytrium limacinum by direct transesterification of algal biomass,” Energy and Fuels, vol. 23, no. 10, pp. 5179–5183, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Siler-Marinkovic and A. Tomasevic, “Transesterification of sunflower oil in situ,” Fuel, vol. 77, no. 12, pp. 1389–1391, 1998. View at Google Scholar · View at Scopus
  19. E. A. Ehimen, Z. F. Sun, and C. G. Carrington, “Variables affecting the in situ transesterification of microalgae lipids,” Fuel, vol. 89, no. 3, pp. 677–684, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. G. Y. S. Mtui, “Recent advances in pretreatment of lignocellulosic wastes and production of value added products,” African Journal of Biotechnology, vol. 8, no. 8, pp. 1398–1415, 2009. View at Google Scholar · View at Scopus
  21. B. C. Saha, L. B. Iten, M. A. Cotta, and Y. V. Wu, “Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol,” Process Biochemistry, vol. 40, no. 12, pp. 3693–3700, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Dong, J. Sun, F. Huang, Q. Gao, Y. Wang, and R. Li, “Using trifluoroacetic acid to pretreat lignocellulosic biomass,” Biomass and Bioenergy, vol. 33, no. 12, pp. 1719–1723, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. Genencor, “AccelleraseTM 1000,” 2007, http://www.genencor.com/wps/wcm/connect/d23ac9804fa2d4cdaec6be4895e3224e/ACCELLERASE+1000+prod+info+sheet.pdf?MOD=AJPERES%CACHEID=d23ac9804fa2d4cdaec6be4895e3224e.
  24. F. Sun and H. Chen, “Enhanced enzymatic hydrolysis of wheat straw by aqueous glycerol pretreatment,” Bioresource Technology, vol. 99, no. 14, pp. 6156–6161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y. Lu, Y. Zhai, M. Liu, and Q. Wu, “Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock,” Journal of Applied Phycology, vol. 22, no. 5, pp. 573–578, 2010. View at Publisher · View at Google Scholar
  26. T. R. Larson and T. A. V. Rees, “Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeodactylum tricornutum (Bacillariophyceae),” Journal of Phycology, vol. 32, no. 3, pp. 388–393, 1996. View at Google Scholar · View at Scopus
  27. G. Kildiran, S. Ö. Yücel, and S. Türkay, “In-situ alcoholysis of soybean oil,” Journal of the American Oil Chemists' Society, vol. 73, no. 2, pp. 225–232, 1996. View at Google Scholar · View at Scopus
  28. A. S. Kulkarni, R. R. Khotpal, R. L. Mehta, and H. A. Bhakare, “Studies in sulfation and sulfonation of some semi-drying oils,” PaintIndia, vol. 41, pp. 41–42, 1991. View at Google Scholar
  29. M. J. Goff, N. S. Bauer, S. Lopes, W. R. Sutterlin, and G. J. Suppes, “Acid-catalyzed alcoholysis of soybean oil,” Journal of the American Oil Chemists' Society, vol. 81, no. 4, pp. 415–420, 2004. View at Google Scholar · View at Scopus
  30. J. Qian, F. Wang, S. Liu, and Z. Yun, “In situ alkaline transesterification of cottonseed oil for production of biodiesel and nontoxic cottonseed meal,” Bioresource Technology, vol. 99, no. 18, pp. 9009–9012, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. Özgül-Yücel and S. Türkay, “Variables affecting the yields of methyl esters derived from in situ esterification of rice bran oil,” Journal of the American Oil Chemists' Society, vol. 79, no. 6, pp. 611–614, 2002. View at Google Scholar · View at Scopus
  32. X. Miao, R. Li, and H. Yao, “Effective acid-catalyzed transesterification for biodiesel production,” Energy Conversion and Management, vol. 50, no. 10, pp. 2680–2684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. P. Kaparaju, M. Serrano, A. B. Thomsen, P. Kongjan, and I. Angelidaki, “Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept,” Bioresource Technology, vol. 100, no. 9, pp. 2562–2568, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. P. A. Selembo, J. M. Perez, W. A. Lloyd, and B. E. Logan, “Enhanced hydrogen and 1,3-propanediol production from glycerol by fermentation using mixed cultures,” Biotechnology and Bioengineering, vol. 104, no. 6, pp. 1098–1106, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Zhu, C. T. Nomura, J. A. Perrotta, A. J. Stipanovic, and J. P. Nakas, “Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia ATCC 17759,” Biotechnology Progress, vol. 26, no. 2, pp. 424–430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Habe, T. Fukuoka, D. Kitamoto, and K. Sakaki, “Biotechnological production of d-glyceric acid and its application,” Applied Microbiology and Biotechnology, vol. 84, no. 3, pp. 445–452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. B. Sialve, N. Bernet, and O. Bernard, “Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable,” Biotechnology Advances, vol. 27, no. 4, pp. 409–416, 2009. View at Publisher · View at Google Scholar · View at Scopus