Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 165894, 6 pages
http://dx.doi.org/10.1155/2011/165894
Research Article

Isolation of BAC Clones Containing Conserved Genes from Libraries of Three Distantly Related Moths: A Useful Resource for Comparative Genomics of Lepidoptera

1Insect Genome Research Unit, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
2Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
3Entomology Research Team, National Institute of Fruit Tree Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8605, Japan
4Laboratory of Applied Molecular Entomology, Research Institute of Agriculture, Hokkaido University, N9, W9, Kita-ku, Sapporo 060-8589, Japan

Received 30 June 2010; Accepted 25 October 2010

Academic Editor: Xin-yuan Guan

Copyright © 2011 Yuji Yasukochi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Wu, S. Asakawa, N. Shimizu, S. Kawasaki, and Y. Yasukochi, “Construction and characterization of bacterial artificial chromosome libraries from the silkworm, Bombyx mori,” Molecular and General Genetics, vol. 261, no. 4-5, pp. 698–706, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. Yasukochi, L. A. Ashakumary, C. Wu et al., “Organization of the Hox gene cluster of the silkworm, Bombyx mori: a split of the Hox cluster in a non-Drosophila insect,” Development Genes and Evolution, vol. 214, no. 12, pp. 606–614, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. Y. Yasukochi, L. A. Ashakumary, K. Baba, A. Yoshido, and K. Sahara, “A second-generation integrated map of the silkworm reveals synteny and conserved gene order between lepidopteran insects,” Genetics, vol. 173, no. 3, pp. 1319–1328, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  4. A. Yoshido, H. Bando, Y. Yasukochi, and K. Sahara, “The Bombyx mori karyotype and the assignment of linkage groups,” Genetics, vol. 170, no. 2, pp. 675–685, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  5. E. D'Alençon, P. Piffanelli, A.-N. Volkoff et al., “A genomic BAC library and a new BAC-GFP vector to study the holocentric pest Spodoptera frugiperda,” Insect Biochemistry and Molecular Biology, vol. 34, no. 4, pp. 331–341, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  6. B. S. Coates, D. V. Sumerford, R. L. Hellmich, and L. C. Lewis, “Repetitive genome elements in a European corn borer, Ostrinia nubilalis, bacterial artificial chromosome library were indicated by bacterial artificial chromosome end sequencing and development of sequence tag site markers: implications for lepidopteran genomic research,” Genome, vol. 52, no. 1, pp. 57–67, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  7. C. Wu, D. Proestou, D. Carter et al., “Construction and sequence sampling of deep-coverage, large-insert BAC libraries for three model lepidopteran species,” BMC Genomics, vol. 10, article 283, 2009. View at Publisher · View at Google Scholar · View at PubMed
  8. R. Papa, C. M. Morrison, J. R. Walters et al., “Highly conserved gene order and numerous novel repetitive elements in genomic regions linked to wing pattern variation in Heliconius butterflies,” BMC Genomics, vol. 9, article 345, 2008. View at Publisher · View at Google Scholar · View at PubMed
  9. S. W. Baxter, M. Chen, A. Dawson et al., “Mis-spliced transcripts of nicotinic acetylcholine receptor a6 are associated with field evolved spinosad resistance in Plutella xylostella,” PLoS Genet, vol. 6, no. 1, Article ID e1000802, 2010. View at Google Scholar
  10. E. D'Alençon, H. Sezutsu, F. Legeai et al., “Extensive synteny conservation of holocentric chromosomes in Lepidoptera despite high rates of local genome rearrangements,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 17, pp. 7680–7685, 2010. View at Publisher · View at Google Scholar · View at PubMed
  11. L. Ferguson, S. Failee, N. Chamberlain et al., “Characterization of a hotspot for mimicry: assembly of a butterfly wing transcriptome to genomic sequence at the HmYb/Sb locus,” Molecular Ecology, vol. 19, supplement 1, pp. 240–254, 2010. View at Google Scholar
  12. Y. Yasukochi, M. Tanaka-Okuyama, F. Shibata et al., “Extensive conserved synteny of genes between the karyotypes of Manduca sexta and Bombyx mori revealed by BAC-FISH mapping,” PLoS One, vol. 4, no. 10, Article ID e7465, 2009. View at Publisher · View at Google Scholar · View at PubMed
  13. K. S. Shelby and H. J. R. Popham, “Analysis of ESTs generated from immune-stimulated hemocytes of larval Heliothis virescens,” Journal of Invertebrate Pathology, vol. 101, no. 2, pp. 86–95, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. H. Vogel, A. J. Heidel, D. G. Heckel, and A. T. Groot, “Transcriptome analysis of the sex pheromone gland of the noctuid moth Heliothis virescens,” BMC Genomics, vol. 11, no. 1, article 29, 2010. View at Publisher · View at Google Scholar · View at PubMed
  15. G. Govind, O. Mittapalli, T. Griebel, S. Allmann, S. Böcker, and I. T. Baldwin, “Unbiased transcriptional comparisons of generalist and specialist herbivores feeding on progressively defenseless Nicotiana attenuata plants,” PLoS One, vol. 5, no. 1, Article ID e8735, 2010. View at Publisher · View at Google Scholar · View at PubMed
  16. B. S. Coates, D. V. Sumerford, R. L. Hellmich, and L. C. Lewis, “Mining an Ostrinia nubilalis midgut expressed sequence tag (EST) library for candidate genes and single nucleotide polymorphisms (SNPs),” Insect Molecular Biology, vol. 17, no. 6, pp. 607–620, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. C. Khajuria, Y. C. Zhu, M.-S. Chen et al., “Expressed sequence tags from larval gut of the European corn borer (Ostrinia nubilalis): exploring candidate genes potentially involved in Bacillus thuringiensis toxicity and resistance,” BMC Genomics, vol. 10, article 286, 2009. View at Publisher · View at Google Scholar · View at PubMed
  18. J. C. Regier, A. Zwick, M. P. Cummings et al., “Toward reconstructing the evolution of advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study,” BMC Evolutionary Biology, vol. 9, no. 1, article 280, 2009. View at Publisher · View at Google Scholar · View at PubMed
  19. A. M. Shelton, J. A. Wyman, N. L. Cushing et al., “Insecticide resistance of diamondback moth (Lepidoptera: Plutellidae) in North America,” Journal of Enonomic Entomology, vol. 86, no. 1, pp. 11–19, 1993. View at Google Scholar · View at Scopus
  20. B. E. Tabashnik, N. L. Cushing, N. Finson, and M. W. Johnson, “Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae),” Journal of Enonomic Entomology, vol. 83, no. 5, pp. 1671–1676, 1990. View at Google Scholar · View at Scopus
  21. J. Z. Zhao, Y. X. Li, H. L. Collins et al., “Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad,” Journal of Economic Entomology, vol. 95, no. 2, pp. 430–436, 2002. View at Google Scholar · View at Scopus
  22. International Silkworm Genome Consortium , “The genome of a lepidopteran model insect, the silkworm Bombyx mori,” Insect Biochemistry and Molecular Biology, vol. 38, no. 12, pp. 1036–1045, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. Y. Yasukochi, “A dense genetic map of the silkworm, Bombyx mori, covering all chromosomes based on 1,018 molecular markers,” Genetics, vol. 150, no. 3, pp. 1513–1525, 1998. View at Google Scholar · View at Scopus
  24. Y. Yasukochi, “PCR-based screening for bacterial artificial chromosome libraries,” Methods in Molecular Biology, vol. 192, pp. 401–410, 2002. View at Google Scholar · View at Scopus
  25. J. H. Eum, Y. R. Seo, S. M. Yoe, S. W. Kang, and S. S. Han, “Analysis of the immune-inducible genes of Plutella xylostella using expressed sequence tags and cDNA microarray,” Developmental and Comparative Immunology, vol. 31, no. 11, pp. 1107–1120, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. R. Robinson, Lepidoptera Genetics, Pergamon, Oxford, UK, 1971.
  27. P. Beldade, S. V. Saenko, N. Pul, and A. D. Long, “A gene-based linkage map for Bicyclus anynana butterflies allows for a comprehensive analysis of synteny with the lepidopteran reference genome,” PLoS Genetics, vol. 5, no. 2, Article ID e1000366, 2009. View at Publisher · View at Google Scholar · View at PubMed
  28. E. G. Pringle, S. W. Baxter, C. L. Webster, A. Papanicolaou, S. F. Lee, and C. D. Jiggins, “Synteny and chromosome evolution in the lepidoptera: evidence from mapping in Heliconius melpomene,” Genetics, vol. 177, no. 1, pp. 417–426, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus