Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 182413, 8 pages
http://dx.doi.org/10.1155/2011/182413
Review Article

The Consequence of Immune Suppressive Cells in the Use of Therapeutic Cancer Vaccines and Their Importance in Immune Monitoring

Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA

Received 27 October 2010; Accepted 15 December 2010

Academic Editor: Timothy M. Clay

Copyright © 2011 Matteo Vergati et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. W. Kantoff, C. S. Higano, N. D. Shore et al., “Sipuleucel-T immunotherapy for castration-resistant prostate cancer,” New England Journal of Medicine, vol. 363, no. 5, pp. 411–422, 2010. View at Publisher · View at Google Scholar · View at PubMed
  2. C. Palena, S. I. Abrams, J. Schlom, and J. W. Hodge, “Cancer vaccines: preclinical studies and novel strategies,” Advances in Cancer Research, vol. 95, pp. 115–145, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  3. C. Palena and J. Schlom, “Vaccines against human carcinomas: strategies to improve antitumor immune responses,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 380697, 2010. View at Publisher · View at Google Scholar · View at PubMed
  4. R. K. Gershon and K. Kondo, “Cell interactions in the induction of tolerance: the role of thymic lymphocytes,” Immunology, vol. 18, no. 5, pp. 723–737, 1970. View at Google Scholar · View at Scopus
  5. R. K. Gershon and K. Kondo, “Infectious immunological tolerance,” Immunology, vol. 21, no. 6, pp. 903–914, 1971. View at Google Scholar · View at Scopus
  6. R. K. Gershon, P. Cohen, R. Hencin, and S. A. Liebhaber, “Suppressor T cells,” Journal of Immunology, vol. 108, no. 3, pp. 586–590, 1972. View at Google Scholar · View at Scopus
  7. A. Corthay, “How do regulatory T cells work?” Scandinavian Journal of Immunology, vol. 70, no. 4, pp. 326–336, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  8. S. Floess, J. Freyer, C. Siewert et al., “Epigenetic control of the foxp3 locus in regulatory T cells,” PLoS Biology, vol. 5, no. 2, p. e38, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  9. S. Sakaguchi, K. Wing, Y. Onishi, P. Prieto-Martin, and T. Yamaguchi, “Regulatory T cells: how do they suppress immune responses?” International Immunology, vol. 21, no. 10, pp. 1105–1111, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  10. K. Wing, Y. Onishi, P. Prieto-Martin et al., “CTLA-4 control over Foxp3 regulatory T cell function,” Science, vol. 322, no. 5899, pp. 271–275, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  11. F. S. Hodi, M. C. Mihm, R. J. Soiffer et al., “Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 8, pp. 4712–4717, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  12. G. Q. Phan, J. C. Yang, R. M. Sherry et al., “Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8372–8377, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  13. A. Ribas, L. H. Camacho, G. Lopez-Berestein et al., “Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206,” Journal of Clinical Oncology, vol. 23, no. 35, pp. 8968–8977, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  14. L. H. Camacho, S. Antonia, J. Sosman et al., “Phase I/II trial of tremelimumab in patients with metastatic melanoma,” Journal of Clinical Oncology, vol. 27, no. 7, pp. 1075–1081, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  15. J. W. Hodge, M. Chakraborty, C. Kudo-Saito, C. T. Garnett, and J. Schlom, “Multiple costimulatory modalities enhance CTL avidity,” Journal of Immunology, vol. 174, no. 10, pp. 5994–6004, 2005. View at Google Scholar · View at Scopus
  16. M. Chakraborty, J. Schlom, and J. W. Hodge, “The combined activation of positive costimulatory signals with modulation of a negative costimulatory signal for the enhancement of vaccine-mediated T-cell responses,” Cancer Immunology, Immunotherapy, vol. 56, no. 9, pp. 1471–1484, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  17. K. S. Peggs, S. A. Quezada, C. A. Chambers, A. J. Korman, and J. P. Allison, “Blockade of CTLA-4 on both effector and regulatory T cell compartments contributes to the antitumor activity of anti-CTLA-4 antibodies,” Journal of Experimental Medicine, vol. 206, no. 8, pp. 1717–1725, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  18. M. Beyer, M. Kochanek, K. Darabi et al., “Reduced frequencies and suppressive function of CD4+CD25+ regulatory T cells in patients with chronic lymphocytic leukemia after therapy with fludarabine,” Blood, vol. 106, no. 6, pp. 2018–2025, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  19. M. Motta, L. Rassenti, B. J. Shelvin et al., “Increased expression of CD152 (CTLA-4) by normal T lymphocytes in untreated patients with B-cell chronic lymphocytic leukemia,” Leukemia, vol. 19, no. 10, pp. 1788–1793, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  20. Z. Z. Yang, A. J. Novak, M. J. Stenson, T. E. Witzig, and S. M. Ansell, “Intratumoral CD4+CD25+ regulatory T-cell-mediated suppression of infiltrating CD4+ T cells in B-cell non-Hodgkin lymphoma,” Blood, vol. 107, no. 9, pp. 3639–3646, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  21. E. Y. Woo, C. S. Chu, T. J. Goletz et al., “Regulatory CD4+CD25+ T cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer,” Cancer Research, vol. 61, no. 12, pp. 4766–4772, 2001. View at Google Scholar · View at Scopus
  22. L. Li, Q. G. Chao, L. Z. Ping et al., “The prevalence of FOXP3 regulatory T-cells in peripheral blood of patients with NSCLC,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 3, pp. 357–367, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  23. B. Karagoz, O. Bilgi, M. Gumus et al., “CD8+CD28-cells and CD4+CD25+ regulatory T cells in the peripheral blood of advanced stage lung cancer patients,” Medical Oncology, vol. 27, no. 1, pp. 29–33, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  24. L. R. Javia and S. A. Rosenberg, “CD4+CD25+ suppressor lymphocytes in the circulation of patients immunized against melanoma antigens,” Journal of Immunotherapy, vol. 26, no. 1, pp. 85–93, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. T. Sasada, M. Kimura, Y. Yoshida, M. Kanai, and A. Takabayashi, “CD4+CD25+ regulatory T cells in patients with gastrointestinal malignancies: possible involvement of regulatory T cells in disease progression,” Cancer, vol. 98, no. 5, pp. 1089–1099, 2003. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  26. L. S. Shen, J. Wang, D. F. Shen et al., “CD4+CD25+CD127(low/-) regulatory T cells express Foxp3 and suppress effector T cell proliferation and contribute to gastric cancers progression,” Clinical Immunology, vol. 131, no. 1, pp. 109–118, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  27. T. J. Curiel, G. Coukos, L. Zou et al., “Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival,” Nature Medicine, vol. 10, no. 9, pp. 942–949, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  28. C. Schaefer, G. G. Kim, A. Albers, K. Hoermann, E. N. Myers, and T. L. Whiteside, “Characteristics of CD4+CD25+ regulatory T cells in the peripheral circulation of patients with head and neck cancer,” British Journal of Cancer, vol. 92, no. 5, pp. 913–920, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  29. L. Ormandy, T. Hillemann, H. Wedemeyer, M. P. Manns, T. F. Greten, and F. Korangy, “Increased populations of regulatory T cells in peripheral blood of patients with hepatocellular carcinoma,” Cancer Research, vol. 65, no. 6, pp. 2457–2464, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  30. P. DeLong, R. G. Carroll, A. C. Henry et al., “Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma,” Cancer Biology and Therapy, vol. 4, no. 3, pp. 342–346, 2005. View at Google Scholar · View at Scopus
  31. U. K. Liyanage, T. T. Moore, H. G. Joo et al., “Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma,” Journal of Immunology, vol. 169, no. 5, pp. 2756–2761, 2002. View at Google Scholar · View at Scopus
  32. A. M. Miller, K. Lundberg, V. Özenci et al., “CD4+CD25+ T cells are enriched in the tumor and peripheral blood of prostate cancer patients,” Journal of Immunology, vol. 177, no. 10, pp. 7398–7405, 2006. View at Google Scholar · View at Scopus
  33. J. Yokokawa, V. Cereda, C. Remondo et al., “Enhanced functionality of CD4+CD25(high)FoxP3+ regulatory T cells in the peripheral blood of patients with prostate cancer,” Clinical Cancer Research, vol. 14, no. 4, pp. 1032–1040, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  34. J. Dannull, Z. Su, D. Rizzieri et al., “Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells,” Journal of Clinical Investigation, vol. 115, no. 12, pp. 3623–3633, 2005. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  35. M. A. Morse, A. C. Hobeika, T. Osada et al., “Depletion of human regulatory T cells specifically enhances antigen-specific immune responses to cancer vaccines,” Blood, vol. 112, no. 3, pp. 610–618, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  36. A. J. Rech and R. H. Vonderheide, “Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells,” Annals of the New York Academy of Sciences, vol. 1174, pp. 99–106, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  37. D. Mougiakakos, C. C. Johansson, E. Trocme et al., “Intratumoral forkhead box p3-positive regulatory t cells predict poor survival in cyclooxygenase-2-positive uveal melanoma,” Cancer, vol. 116, no. 9, pp. 2224–2233, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  38. J. Zhou, T. Ding, W. Pan, L. Y. Zhu, A. Li, and L. Zheng, “Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients,” International Journal of Cancer, vol. 125, no. 7, pp. 1640–1648, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  39. H. Suzuki, N. Chikazawa, T. Tasaka et al., “Intratumoral CD8 T/FOXP3 cell ratio is a predictive marker for survival in patients with colorectal cancer,” Cancer Immunology, Immunotherapy, vol. 59, no. 5, pp. 653–661, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  40. S. Halabi, E. J. Small, P. W. Kantoff et al., “Prognostic model for predicting survival in men with hormone-refractory metastatic prostate cancer,” Journal of Clinical Oncology, vol. 21, no. 7, pp. 1232–1237, 2003. View at Publisher · View at Google Scholar · View at Scopus
  41. J. L. Gulley, P. M. Arlen, R. A. Madan et al., “Immunologic and prognostic factors associated with overall survival employing a poxviral-based PSA vaccine in metastatic castrate-resistant prostate cancer,” Cancer Immunology, Immunotherapy, vol. 59, no. 5, pp. 663–674, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  42. M. Vergati, V. Cereda, R. Madan et al., “Circulating regulatory T-cell function and overall survival in metastatic castration-resistant prostate cancer (mCRPC) patients treated with poxviral-based vaccine,” in Proceedings of the International Society for Biological Therapy of Cancer 24th Annual Meeting, Washington, DC, USA, October 2009.
  43. J. Kao, E. C. Ko, S. Eisenstein, A. G. Sikora, S. Fu, and S. H. Chen, “Targeting immune suppressing myeloid-derived suppressor cells in oncology,” Critical Reviews in Oncology/Hematology, vol. 77, no. 1, pp. 12–19, 2011. View at Publisher · View at Google Scholar · View at PubMed
  44. M. J. Delano, P. O. Scumpia, J. S. Weinstein et al., “MyD88-dependent expansion of an immature GR-1 CD11b population induces T cell suppression and Th2 polarization in sepsis,” Journal of Experimental Medicine, vol. 204, no. 6, pp. 1463–1474, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  45. O. Goni, P. Alcaide, and M. Fresno, “Immunosuppression during acute Trypanosoma cruzi infection: Involvement of Ly6G (Gr1)CD11b immature myeloid suppressor cells,” International Immunology, vol. 14, no. 10, pp. 1125–1134, 2002. View at Google Scholar · View at Scopus
  46. C. Sunderkötter, T. Nikolic, M. J. Dillon et al., “Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response,” Journal of Immunology, vol. 172, no. 7, pp. 4410–4417, 2004. View at Google Scholar · View at Scopus
  47. B. Zhu, Y. Bando, S. Xiao et al., “CD11b+Ly-6C(hi) suppressive monocytes in experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 179, no. 8, pp. 5228–5237, 2007. View at Google Scholar · View at Scopus
  48. E. Peranzoni, S. Zilio, I. Marigo et al., “Myeloid-derived suppressor cell heterogeneity and subset definition,” Current Opinion in Immunology, vol. 22, no. 2, pp. 238–244, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  49. S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells: more mechanisms for inhibiting antitumor immunity,” Cancer Immunology, Immunotherapy, vol. 59, pp. 1593–1600, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  50. P. C. Rodriguez, D. G. Quiceno, and A. C. Ochoa, “L-arginine availability regulates T-lymphocyte cell-cycle progression,” Blood, vol. 109, no. 4, pp. 1568–1573, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  51. B. Hoechst, L. A. Ormandy, M. Ballmaier et al., “A new population of myeloid-derived suppressor cells in hepatocellular carcinoma patients induces CD4+CD25+Foxp3+ T cells,” Gastroenterology, vol. 135, no. 1, pp. 234–243, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  52. B. Hoechst, T. Voigtlaender, L. Ormandy et al., “Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor,” Hepatology, vol. 50, no. 3, pp. 799–807, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  53. B. Huang, P. Y. Pan, Q. Li et al., “Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host,” Cancer Research, vol. 66, no. 2, pp. 1123–1131, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  54. P. Serafini, S. Mgebroff, K. Noonan, and I. Borrello, “Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells,” Cancer Research, vol. 68, no. 13, pp. 5439–5449, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  55. M. K. Srivastava, P. Sinha, V. K. Clements, P. Rodriguez, and S. Ostrand-Rosenberg, “Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine,” Cancer Research, vol. 70, no. 1, pp. 68–77, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  56. D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  57. P. Filipazzi, R. Valenti, V. Huber et al., “Identification of a new subset of myeloid suppressor cells in peripheral blood of melanoma patients with modulation by a granulocyte-macrophage colony-stimulation factor-based antitumor vaccine,” Journal of Clinical Oncology, vol. 25, no. 18, pp. 2546–2553, 2007. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  58. M. P. Gustafson, Y. Lin, K. C. New et al., “Systemic immune suppression in glioblastoma: the interplay between CD14+HLA-DRlo/neg monocytes, tumor factors, and dexamethasone,” Neuro-Oncology, vol. 12, no. 7, pp. 631–644, 2010. View at Google Scholar
  59. S. Vuk-Pavlovic, P. A. Bulur, Y. Lin et al., “Immunosuppressive CD14HLA-DR monocytes in prostate cancer,” Prostate, vol. 70, no. 4, pp. 443–455, 2010. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  60. C. M. Diaz-Montero, M. L. Salem, M. I. Nishimura, E. Garrett-Mayer, D. J. Cole, and A. J. Montero, “Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy,” Cancer Immunology, Immunotherapy, vol. 58, no. 1, pp. 49–59, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  61. J. S. Ko, A. H. Zea, B. I. Rini et al., “Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients,” Clinical Cancer Research, vol. 15, no. 6, pp. 2148–2157, 2009. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  62. K. N. Kodumudi, K. Woan, D. L. Gilvary, E. Sahakian, S. Wei, and J. Y. Djeu, “A novel chemoimmunomodulating property of docetaxel: suppression of myeloid-derived suppressor cells in tumor bearers,” Clinical Cancer Research, vol. 16, no. 18, pp. 4583–4594, 2010. View at Publisher · View at Google Scholar · View at PubMed
  63. C. Guruvayoorappan, “Tumor versus tumor-associated macrophages: how hot is the link?” Integrative Cancer Therapies, vol. 7, no. 2, pp. 90–95, 2008. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  64. D. Liao, Y. Luo, D. Markowitz, R. Xiang, and R. A. Reisfeld, “Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model,” PLoS One, vol. 4, no. 11, Article ID e7965, 2009. View at Publisher · View at Google Scholar · View at PubMed
  65. N. Koide, A. Nishio, T. Sato, A. Sugiyama, and S. I. Miyagawa, “Significance of macrophage chemoattractant protein-1 expression and macrophage infiltration in squamous cell carcinoma of the esophagus,” American Journal of Gastroenterology, vol. 99, no. 9, pp. 1667–1674, 2004. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  66. T. Hanada, M. Nakagawa, A. Emoto, T. Nomura, N. Nasu, and Y. Nomura, “Prognostic value of tumor-associated macrophage count in human bladder cancer,” International Journal of Urology, vol. 7, no. 7, pp. 263–269, 2000. View at Publisher · View at Google Scholar · View at Scopus
  67. I. F. Lissbrant, P. Stattin, P. Wikstrom, J. E. Damber, L. Egevad, and A. Bergh, “Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival,” International Journal of Oncology, vol. 17, no. 3, pp. 445–451, 2000. View at Google Scholar · View at Scopus
  68. S. Ohno, Y. Ohno, N. Suzuki et al., “Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer,” Anticancer Research, vol. 24, no. 5, pp. 3335–3342, 2004. View at Google Scholar · View at Scopus
  69. R. D. Leek and A. L. Harris, “Tumor-associated macrophages in breast cancer,” Journal of Mammary Gland Biology and Neoplasia, vol. 7, no. 2, pp. 177–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  70. B. C. Zhang, J. Gao, J. Wang, Z. G. Rao, B. C. Wang, and J. F. Gao, “Tumor-associated macrophages infiltration is associated with peritumoral lymphangiogenesis and poor prognosis in lung adenocarcinoma,” Medical Oncology, 2010. Epub ahead of print. View at Publisher · View at Google Scholar · View at PubMed
  71. R. D. Leek, N. C. Hunt, R. J. Landers, C. E. Lewis, J. A. Royds, and A. L. Harris, “Macrophage infiltration is associated with VEGF and EGFR expression in breast cancer,” Journal of Pathology, vol. 190, no. 4, pp. 430–436, 2000. View at Google Scholar · View at Scopus
  72. M. Orre and P. A. W. Rogers, “Macrophages and microvessel density in tumors of the ovary,” Gynecologic Oncology, vol. 73, no. 1, pp. 47–50, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  73. R. D. Leek, R. J. Landers, A. L. Harris, and C. E. Lewis, “Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast,” British Journal of Cancer, vol. 79, no. 5-6, pp. 991–995, 1999. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus
  74. A. Nishie, M. Ono, T. Shono et al., “Macrophage infiltration and heme oxygenase-1 expression correlate with angiogenesis in human gliomas,” Clinical Cancer Research, vol. 5, no. 5, pp. 1107–1113, 1999. View at Google Scholar · View at Scopus
  75. M. Gnant, “Bisphosphonates in the prevention of disease recurrence: current results and ongoing trials,” Current Cancer Drug Targets, vol. 9, no. 7, pp. 824–833, 2009. View at Publisher · View at Google Scholar · View at Scopus
  76. H. L. Neville-Webbe, M. Gnant, and R. E. Coleman, “Potential anticancer properties of bisphosphonates,” Seminars in Oncology, vol. 37, supplement 1, pp. S53–S65, 2010. View at Publisher · View at Google Scholar · View at PubMed
  77. J. D. Veltman, M. E. H. Lambers, M. Van Nimwegen et al., “Zoledronic acid impairs myeloid differentiation to tumour-associated macrophages in mesothelioma,” British Journal of Cancer, vol. 103, no. 5, pp. 629–641, 2010. View at Publisher · View at Google Scholar · View at PubMed
  78. M. Vergati, C. Intrivici, N. Y. Huen, J. Schlom, and K. Y. Tsang, “Strategies for cancer vaccine development,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 596432, 2010. View at Publisher · View at Google Scholar · View at PubMed
  79. F. S. Hodi, S. J. O'Day, D. F. McDermott et al., “Improved survival with ipilimumab in patients with metastatic melanoma,” New England Journal of Medicine, vol. 363, no. 8, pp. 711–723, 2010. View at Publisher · View at Google Scholar · View at PubMed
  80. U. Keilholz, P. Martus, and C. Scheibenbogen, “Immune monitoring of T-cell responses in cancer vaccine development,” Clinical Cancer Research, vol. 12, no. 7, pp. 2346s–2352s, 2006. View at Publisher · View at Google Scholar · View at PubMed · View at Scopus