Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 187103, 14 pages
http://dx.doi.org/10.1155/2011/187103
Review Article

Sex Differences in Drug Disposition

1Departments of Oncology, Georgetown University Medical Center, Washington, DC 20057, USA
2Departments of Medicine, Physiology, Obstetrics and Gynecology, Georgetown University Medical Center, Washington, DC 20057, USA
3Lombardi Comprehensive Cancer Center, LL, S-166, Georgetown University Medical Center, 3800 Reservoir Road, N.W., Washington, DC 20057, USA
4Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Rockville, MD 20852-3902, USA

Received 29 October 2010; Revised 20 December 2010; Accepted 5 January 2011

Academic Editor: Stelvio M. Bandiera

Copyright © 2011 Offie P. Soldin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. J. Legato, Principles of Gender-Specific Medicine, Academic Press, Amsterdam, The Netherlands, 2010.
  2. M. J. Legato and J. P. Bilezikian, Principles of Gender-Specific Medicine, Elsevier Academic Press, Boston, Mass, USA, 2004.
  3. M. A. Hamburg and F. S. Collins, “The path to personalized medicine,” New England Journal of Medicine, vol. 363, no. 4, pp. 301–304, 2010. View at Publisher · View at Google Scholar
  4. J. G. Hardman, L. E. Limbird, and A. G. Gilman, Goodman & Gilman's the Pharmacological Basis of Therapeutics, McGraw-Hill, New York, NY, USA, 2001.
  5. O. P. Soldin and D. R. Mattison, “Sex differences in pharmacokinetics and pharmacodynamics,” Clinical Pharmacokinetics, vol. 48, no. 3, pp. 143–157, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. “Exploring the biological contributions to human health: does sex matter?” Journal of Women's Health and Gender-Based Medicine, vol. 10, no. 5, pp. 433–439, 2001.
  7. K. Messing and J. Mager Stellman, “Sex, gender and women's occupational health: the importance of considering mechanism,” Environmental Research, vol. 101, no. 2, pp. 149–162, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. S. H. Zahm, A. Blair, and D. D. Weisenburger, “Sex differences in the risk of multiple myeloma associated with agriculture,” British Journal of Industrial Medicine, vol. 49, no. 11, pp. 815–816, 1992. View at Google Scholar · View at Scopus
  9. “The Science of Sex and Gender in Human Health,” 2010, http://sexandgendercourse.od.nih.gov/.
  10. A. Marrocco and D. E. Stewart, “We've come a long way, maybe: recruitment of women and analysis of results by sex in clinical research,” Journal of Women's Health and Gender-Based Medicine, vol. 10, no. 2, pp. 175–179, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. “Report of the Advisory Committee on Research on Women's Health; Fiscal Years,” 2005-2006, http://orwh.od.nih.gov/pubs/complete_ICD_report05_06.pdf.
  12. G. R. Robertson, D. M. Grant, and M. Piquette-Miller, “Pharmacogenetics of pharmacoecology: which route to personalized medicine?” Clinical Pharmacology and Therapeutics, vol. 85, no. 4, pp. 343–348, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Zopf, C. Rabe, A. Neubert, E. G. Hahn, and H. Dormann, “Risk factors associated with adverse drug reactions following hospital admission: a prospective analysis of 907 patients in two German university hospitals,” Drug Safety, vol. 31, no. 9, pp. 789–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Tran, S. R. Knowles, B. A. Liu, and N. H. Shear, “Gender differences in adverse drug reactions,” Journal of Clinical Pharmacology, vol. 38, no. 11, pp. 1003–1009, 1998. View at Google Scholar · View at Scopus
  15. J. Gray, “Why can't a woman be more like a man?” Clinical Pharmacology and Therapeutics, vol. 82, no. 1, pp. 15–17, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. J. B. Schwartz, “The current state of knowledge on age, sex, and their interactions on clinical pharmacology,” Clinical Pharmacology and Therapeutics, vol. 82, no. 1, pp. 87–96, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. A. L. H. J. Aarnoudse, J. P. Dieleman, and B. H. C. Stricker, “Age- and gender-specific incidence of hospitalisation for digoxin intoxication,” Drug Safety, vol. 30, no. 5, pp. 431–436, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. “Drug safety: most drugs withdrawn in recent years had greater health risks for women,” 2010, http://www.gao.gov/new.items/d01286r.pdf.
  19. H. Zhang, D. Cui, B. Wang et al., “Pharmacokinetic drug interactions involving 17α-ethinylestradiol: a new look at an old drug,” Clinical Pharmacokinetics, vol. 46, no. 2, pp. 133–157, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. L. Chen, S. C. Lee, M. J. Ng, D. J. Schuirmann, L. J. Lesko, and R. L. Williams, “Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics,” Clinical Pharmacology and Therapeutics, vol. 68, no. 5, pp. 510–521, 2000. View at Publisher · View at Google Scholar · View at Scopus
  21. S. J. Coker, “Drugs for men and women—how important is gender as a risk factor for TdP?” Pharmacology and Therapeutics, vol. 119, no. 2, pp. 186–194, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. A. M. Stephen, H. S. Wiggins, and H. N. Englyst, “The effect of age, sex and level of intake of dietary fibre from wheat on large-bowel function in thirty healthy subjects,” British Journal of Nutrition, vol. 56, no. 2, pp. 349–361, 1986. View at Google Scholar · View at Scopus
  23. J. M. Nicolas, P. Espie, and M. Molimard, “Gender and interindividual variability in pharmacokinetics,” Drug Metabolism Reviews, vol. 41, no. 3, pp. 408–421, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. M. L. Chen, S. C. Lee, M. J. Ng, D. J. Schuirmann, L. J. Lesko, and R. L. Williams, “Pharmacokinetic analysis of bioequivalence trials: implications for sex-related issues in clinical pharmacology and biopharmaceutics,” Clinical Pharmacology and Therapeutics, vol. 68, no. 5, pp. 510–521, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Bebia, S. C. Buch, J. W. Wilson et al., “Bioequivalence revisited: influence of age and sex on CYP enzymes,” Clinical Pharmacology and Therapeutics, vol. 76, no. 6, pp. 618–627, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. R. Wolbold, K. Klein, O. Burk et al., “Sex is a major determinant of CYP3A4 expression in human liver,” Hepatology, vol. 38, no. 4, pp. 978–988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  27. D. J. Greenblatt and L. L. von Moltke, “Gender has a small but statistically significant effect on clearance of CYP3A substrate drugs,” Journal of Clinical Pharmacology, vol. 48, no. 11, pp. 1350–1355, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Karim, Z. Zhao, M. Slater, D. Bradford, J. Schuster, and A. Laurent, “Replicate study design in bioequivalency assessment, pros and cons: bioavailabilities of the antidiabetic drugs pioglitazone and glimepiride present in a fixed-dose combination formulation,” Journal of Clinical Pharmacology, vol. 47, no. 7, pp. 806–816, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Karim, M. Slater, D. Bradford et al., “Oral antidiabetic drugs: bioavailability assessment of fixed-dose combination tablets of pioglitazone and metformin. Effect of body weight, gender, and race on systemic exposures of each drug,” Journal of Clinical Pharmacology, vol. 47, no. 1, pp. 37–47, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. D. A. I. Ashiru, R. Patel, and A. W. Basit, “Polyethylene glycol 400 enhances the bioavailability of a BCS class III drug (ranitidine) in male subjects but not females,” Pharmaceutical Research, vol. 25, no. 10, pp. 2327–2333, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. F. Kees, M. Bucher, F. Schweda, H. Gschaidmeier, L. Faerber, and R. Seifert, “Neoimmun versus Neoral: a bioequivalence study in healthy volunteers and influence of a fat-rich meal on the bioavailability of Neoimmun,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 375, no. 6, pp. 393–399, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Gandhi, F. Aweeka, R. M. Greenblatt, and T. F. Blaschke, “Sex differences in pharmacokinetics and pharmacodynamics,” Annual Review of Pharmacology and Toxicology, vol. 44, pp. 499–523, 2004. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Lindahl, L. Stahle, A. Bruchfeld, and R. Schvarcz, “High-dose ribavirin in combination with standard dose peginterferon for treatment of patients with chronic hepatitis C,” Hepatology, vol. 41, no. 2, pp. 275–279, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. K. M. Giacomini, S. M. Huang, D. J. Tweedie et al., “Membrane transporters in drug development,” Nature Reviews Drug Discovery, vol. 9, no. 3, pp. 215–236, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Kadono, T. Akabane, K. Tabata, K. Gato, S. Terashita, and T. Teramura, “Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor,” Drug Metabolism and Disposition, vol. 38, no. 7, pp. 1230–1237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. M. J. Kennedy, “Hormonal regulation of hepatic drug-metabolizing enzyme activity during adolescence,” Clinical Pharmacology and Therapeutics, vol. 84, no. 6, pp. 662–673, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Parlesak, M. H. U. Billinger, C. Bode, and J. C. Bode, “Gastric alcohol dehydrogenase activity in man: influence of gender, age, alcohol consumption and smoking in a Caucasian population,” Alcohol and Alcoholism, vol. 37, no. 4, pp. 388–393, 2002. View at Google Scholar · View at Scopus
  38. S. Leskelä, C. Jara, L. J. Leandro-García et al., “Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity,” Pharmacogenomics Journal. In press. View at Publisher · View at Google Scholar · View at Scopus
  39. F. F. Buchanan, P. S. Myles, and F. Cicuttini, “Patient sex and its influence on general anaesthesia,” Anaesthesia and Intensive Care, vol. 37, no. 2, pp. 207–218, 2009. View at Google Scholar · View at Scopus
  40. G. Englund, F. Rorsman, A. Rönnblom et al., “Regional levels of drug transporters along the human intestinal tract: co-expression of ABC and SLC transporters and comparison with Caco-2 cells,” European Journal of Pharmaceutical Sciences, vol. 29, no. 3-4, pp. 269–277, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. M. Fröhlich, N. Albermann, A. Sauer, I. Walter-Sack, W. E. Haefeli, and J. Weiss, “In vitro and ex vivo evidence for modulation of P-glycoprotein activity by progestins,” Biochemical Pharmacology, vol. 68, no. 12, pp. 2409–2416, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. I. Tamai, A. Saheki, R. Saitoh, Y. Sai, I. Yamada, and A. Tsuji, “Nonlinear intestinal absorption of 5-hydroxytryptamine receptor antagonist caused by absorptive and secretory transporters,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 1, pp. 108–115, 1997. View at Google Scholar · View at Scopus
  43. H. Jovanovic, J. Lundberg, P. Karlsson et al., “Sex differences in the serotonin 1A receptor and serotonin transporter binding in the human brain measured by PET,” NeuroImage, vol. 39, no. 3, pp. 1408–1419, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. B. J. Salena and R. H. Hunt, “The stomach and duodenum,” in First Principles of Gastroenterology: The Basis of Disease and an Approach to Management, A. B. R. Thomson and E. A. Shaffer, Eds., Canadian Association of Gastroenterology/Astra Pharma, Mississauga, Canada, 2nd edition, 1994. View at Google Scholar
  45. K. L. Bigos, B. G. Pollock, B. A. Stankevich, and R. R. Bies, “Sex differences in the pharmacokinetics and pharmacodynamics of antidepressants: an updated review,” Gender Medicine, vol. 6, no. 4, pp. 522–543, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Butera, D. A. Feinfeld, and M. Bhargava, “Sex differences in the subunits of glutathione-S-transferase isoenzyme from rat and human kidney,” Enzyme, vol. 43, no. 4, pp. 175–182, 1990. View at Google Scholar · View at Scopus
  47. A. Jacobs, “Sex differences in iron absorption,” Proceedings of the Nutrition Society, vol. 35, no. 2, pp. 159–162, 1976. View at Google Scholar · View at Scopus
  48. P. A. Routledge, W. W. Stargel, B. B. Kitchell, A. Barchowsky, and D. G. Shand, “Sex-related differences in the plasma protein binding of lignocaine and diazepam,” British Journal of Clinical Pharmacology, vol. 11, no. 3, pp. 245–250, 1981. View at Google Scholar · View at Scopus
  49. M. J. P. Arthur, A. Lee, and R. Wright, “Sex differences in the metabolism of ethanol and acetaldehyde in normal subjects,” Clinical Science, vol. 67, no. 4, pp. 397–401, 1984. View at Google Scholar · View at Scopus
  50. K. M. Sowinski, S. R. Abel, W. R. Clark, and B. A. Mueller, “Effect of gender on the pharmacokinetics of ofloxacin,” Pharmacotherapy, vol. 19, no. 4, pp. 442–446, 1999. View at Google Scholar · View at Scopus
  51. A. W. Jones, “Evidence-based survey of the elimination rates of ethanol from blood with applications in forensic casework,” Forensic Science International, vol. 200, no. 1–3, pp. 1–20, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. L. R. Williams and R. W. Leggett, “Reference values for resting blood flow to organs of man,” Clinical Physics and Physiological Measurement, vol. 10, no. 3, pp. 187–217, 1989. View at Publisher · View at Google Scholar · View at Scopus
  53. M. Succari, M. J. Foglietti, and F. Percheron, “Microheterogeneity of α-acid glycoprotein: variation during the menstrual cycle in healthy women, and profile in women receiving estrogen-progestogen treatment,” Clinica Chimica Acta, vol. 187, no. 3, pp. 235–242, 1990. View at Publisher · View at Google Scholar · View at Scopus
  54. I. Wiegratz, E. Kutschera, J. H. Lee et al., “Effect of four different oral contraceptives on various sex hormones and serum-binding globulins,” Contraception, vol. 67, no. 1, pp. 25–32, 2003. View at Publisher · View at Google Scholar · View at Scopus
  55. C. M. Young and R. S. Tensuan, “Estimating the lean body mass of young women. Use of skeletal measurements,” Journal of the American Dietetic Association, vol. 42, pp. 46–51, 1963. View at Google Scholar · View at Scopus
  56. F. E. Hytten, “Weight gain in pregnancy—30 years of research,” South African Medical Journal, vol. 60, no. 1, pp. 15–19, 1981. View at Google Scholar · View at Scopus
  57. I. T. Houghton, C. S. T. Aun, and T. E. Oh, “Vecuronium: an anthropometric comparison,” Anaesthesia, vol. 47, no. 9, pp. 741–746, 1992. View at Google Scholar · View at Scopus
  58. F. S. Xue, S. Y. Tong, X. Liao, J. H. Liu, G. An, and L. K. Luo, “Dose-response and time course of effect of rocuronium in male and female anesthetized patients,” Anesthesia and Analgesia, vol. 85, no. 3, pp. 667–671, 1997. View at Publisher · View at Google Scholar · View at Scopus
  59. H. R. Ochs, D. J. Greenblatt, and M. Divoll, “Diazepam kinetics in relation to age and sex,” Pharmacology, vol. 23, no. 1, pp. 24–30, 1981. View at Google Scholar · View at Scopus
  60. M. del Carmen Carrasco-Portugal, M. Luján, and F. J. Flores-Murrieta, “Evaluation of gender in the oral pharmacokinetics of clindamycin in humans,” Biopharmaceutics and Drug Disposition, vol. 29, no. 7, pp. 427–430, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. V. Jarugula, C.-M. Yeh, D. Howard, C. Bush, D. L. Keefe, and W. P. Dole, “Influence of body weight and gender on the pharmacokinetics, pharmacodynamics, and antihypertensive efficacy of aliskiren,” Journal of Clinical Pharmacology, vol. 50, no. 12, pp. 1358–1366, 2010. View at Publisher · View at Google Scholar
  62. T. Guo, W. J. Sun, D. Y. Xia, and L. S. Zhao, “The pharmacokinetics of fluconazole in healthy Chinese adult volunteers: influence of ethnicity and gender,” Journal of Clinical Pharmacy and Therapeutics, vol. 35, no. 2, pp. 231–237, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. S. Fudio, A. M. Borobia, E. Piñana et al., “Evaluation of the influence of sex and CYP2C19 and CYP2D6 polymorphisms in the disposition of citalopram,” European Journal of Pharmacology, vol. 626, no. 2-3, pp. 200–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. ILSI Risk Science Institute Working Group on Physiological Parameters, International Life Sciences Institute, 1994.
  65. S. F. Cooper, D. Drolet, and R. Dugal, “Comparative bioavailability of two oral formulations of flurazepam in human subjects,” Biopharmaceutics and Drug Disposition, vol. 5, no. 2, pp. 127–139, 1984. View at Google Scholar · View at Scopus
  66. D. J. Greenblatt, R. I. Shader, and K. Franke, “Kinetics of intravenous chlordiazepoxide: sex differences in drug distribution,” Clinical Pharmacology and Therapeutics, vol. 22, no. 6, pp. 893–903, 1977. View at Google Scholar · View at Scopus
  67. L. Aarons, K. Hopkins, M. Rowland, S. Brossel, and J. F. Thiercelin, “Route of administration and sex differences in the pharmacokinetics of aspirin, administered as its lysine salt,” Pharmaceutical Research, vol. 6, no. 8, pp. 660–666, 1989. View at Google Scholar · View at Scopus
  68. N. R. C. Campbell, R. D. Hull, R. Brant, D. B. Hogan, G. F. Pineo, and G. E. Raskob, “Different effects of heparin in males and females,” Clinical and Investigative Medicine, vol. 21, no. 2, pp. 71–78, 1998. View at Google Scholar · View at Scopus
  69. Z. Trnavska and K. Trnavsky, “Sex differences in the pharmacokinetics of salicylates,” European Journal of Clinical Pharmacology, vol. 25, no. 5, pp. 679–682, 1983. View at Google Scholar · View at Scopus
  70. M. J. Cupp and T. S. Tract, “Cytochrome P450: new nomenclature and clinical implications,” American Family Physician, vol. 57, no. 1, pp. 107–116, 1998. View at Google Scholar · View at Scopus
  71. E. L. Michalets, “Update: clinically significant cytochrome P-450 drug interactions,” Pharmacotherapy, vol. 18, no. 1, pp. 84–112, 1998. View at Google Scholar · View at Scopus
  72. B. Kalra, “Cytochrome P450 enzyme isoforms and their therapeutic implications: an update,” Indian Journal of Medical Sciences, vol. 61, no. 2, pp. 102–116, 2007. View at Google Scholar · View at Scopus
  73. M. T. Donato and J. V. Castell, “Strategies and molecular probes to investigate the role of cytochrome P450 in drug metabolism: focus on in vitro studies,” Clinical Pharmacokinetics, vol. 42, no. 2, pp. 153–178, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. J. H. Lin and A. Y. H. Lu, “Inhibition and induction of cytochrome P450 and the clinical implications,” Clinical Pharmacokinetics, vol. 35, no. 5, pp. 361–390, 1998. View at Google Scholar · View at Scopus
  75. G. K. Dresser, J. D. Spence, and D. G. Bailey, “Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition,” Clinical Pharmacokinetics, vol. 38, no. 1, pp. 41–57, 2000. View at Google Scholar · View at Scopus
  76. S. Zhou, S. Y. Chan, B. C. Goh et al., “Mechanism-based inhibition of cytochrome P450 3A4 by therapeutic drugs,” Clinical Pharmacokinetics, vol. 44, no. 3, pp. 279–304, 2005. View at Publisher · View at Google Scholar · View at Scopus
  77. J. M. Custodio, C. Y. Wu, and L. Z. Benet, “Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption,” Advanced Drug Delivery Reviews, vol. 60, no. 6, pp. 717–733, 2008. View at Publisher · View at Google Scholar · View at Scopus
  78. G. D. Anderson, “Sex differences in drug metabolism: cytochrome P-450 and uridine diphosphate glucuronosyltransferase,” Journal of Gender-Specific Medicine, vol. 5, no. 1, pp. 25–33, 2002. View at Google Scholar · View at Scopus
  79. U. Lutz, N. Bittner, M. Ufer, and W. K. Lutz, “Quantification of cortisol and 6 beta-hydroxycortisol in human urine by LC-MS/MS, and gender-specific evaluation of the metabolic ratio as biomarker of CYP3A activity,” Journal of Chromatography B, vol. 878, no. 1, pp. 97–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. D. J. Waxman and M. G. Holloway, “Sex differences in the expression of hepatic drug metabolizing enzymes,” Molecular Pharmacology, vol. 76, no. 2, pp. 215–228, 2009. View at Publisher · View at Google Scholar · View at Scopus
  81. W. Aichhorn, A. B. Whitworth, E. M. Weiss, H. Hinterhuber, and J. Marksteiner, “Differences between men and women in side effects of second-generation antipsychotics,” Nervenarzt, vol. 78, no. 1, pp. 45–52, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Choi, B. DiSilvio, J. Unangst, and J. D. Fernstrom, “Effect of chronic infusion of olanzapine and clozapine on food intake and body weight gain in male and female rats,” Life Sciences, vol. 81, no. 12, pp. 1024–1030, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. T. Furukawa and J. Kurokawa, “Regulation of cardiac ion channels via non-genomic action of sex steroid hormones: implication for the gender difference in cardiac arrhythmias,” Pharmacology and Therapeutics, vol. 115, no. 1, pp. 106–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  84. H. Ljunggren, “Studies on body composition; with special reference to the composition of obesity tissue and non-obesity tissue,” Acta Endocrinologica, vol. 25, no. 33, pp. 1–58, 1957. View at Google Scholar · View at Scopus
  85. J. J. Cunningham, “Body composition and resting metabolic rate: the myth of feminine metabolism,” American Journal of Clinical Nutrition, vol. 36, no. 4, pp. 721–726, 1982. View at Google Scholar · View at Scopus
  86. S. E. Gaudry, D. S. Sitar, D. D. Smyth, J. K. McKenzie, and F. Y. Aoki, “Gender and age as factors in the inhibition of renal clearance of amantadine by quinine and quinidine,” Clinical Pharmacology and Therapeutics, vol. 54, no. 1, pp. 23–27, 1993. View at Google Scholar · View at Scopus
  87. U. B. Berg, “Differences in decline in GFR with age between males and females. Reference data on clearances of inulin and PAH in potential kidney donors,” Nephrology Dialysis Transplantation, vol. 21, no. 9, pp. 2577–2582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  88. U. Werner, D. Werner, S. Heinbüchner et al., “Gender is an important determinant of the disposition of the loop diuretic torasemide,” Journal of Clinical Pharmacology, vol. 50, no. 2, pp. 160–168, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. F. E. Hytten and G. Chamberlain, Clinical Physiology in Obstetrics, Blackwell Scientific, Oxford, UK, 1980.
  90. T. Silvaggio and D. R. Mattison, “Setting occupational health standards: toxicokinetic differences among and between men and women,” Journal of Occupational Medicine, vol. 36, no. 8, pp. 849–854, 1994. View at Google Scholar · View at Scopus
  91. J. S. Mogil, J. Ritchie, S. B. Smith et al., “Melanocortin-1 receptor gene variants affect pain and μ-opioid analgesia in mice and humans,” Journal of Medical Genetics, vol. 42, no. 7, pp. 583–587, 2005. View at Publisher · View at Google Scholar · View at Scopus
  92. E. Sarton, E. Olofsen, R. Romberg et al., “Sex differences in morphine analgesia: an experimental study in healthy volunteers,” Anesthesiology, vol. 93, no. 5, pp. 1245–1254, 2000. View at Google Scholar
  93. M. S. Cepeda and D. B. Carr, “Women experience more pain and require more morphine than men to achieve a similar degree of analgesia,” Anesthesia and Analgesia, vol. 97, no. 5, pp. 1464–1468, 2003. View at Google Scholar · View at Scopus
  94. R. B. Fillingim, C. D. King, M. C. Ribeiro-Dasilva, B. Rahim-Williams, and J. L. Riley, “Sex, gender, and pain: a review of recent clinical and experimental findings,” Journal of Pain, vol. 10, no. 5, pp. 447–485, 2009. View at Publisher · View at Google Scholar · View at Scopus
  95. L. Fattore, P. Fadda, and W. Fratta, “Sex differences in the self-administration of cannabinoids and other drugs of abuse,” Psychoneuroendocrinology, vol. 34, supplement 1, pp. S227–S236, 2009. View at Publisher · View at Google Scholar
  96. F. Leblhuber, C. Neubauer, M. Peichl et al., “Age and sex differences of dehydroepiandrosterone sulfate (DHEAS) and cortisol (CRT) plasma levels in normal controls and Alzheimer's disease (AD),” Psychopharmacology, vol. 111, no. 1, pp. 23–26, 1993. View at Google Scholar · View at Scopus
  97. K. Tanaka, N. Shimizu, H. Imura et al., “Human corticotropin-releasing hormone (hCRH) test: sex and age differences in plasma ACTH and cortisol responses and their reproducibility in healthy adults,” Endocrine Journal, vol. 40, no. 5, pp. 571–579, 1993. View at Google Scholar
  98. H. Vierhapper, P. Nowotny, and W. Waldhäusl, “Sex-specific differences in cortisol production rates in humans,” Metabolism, vol. 47, no. 8, pp. 974–976, 1998. View at Publisher · View at Google Scholar · View at Scopus
  99. S. S. Rathore, Y. Wang, and H. M. Krumholz, “Sex-based differences in the effect of digoxin for the treatment of heart failure,” New England Journal of Medicine, vol. 347, no. 18, pp. 1403–1411, 2002. View at Publisher · View at Google Scholar · View at Scopus
  100. I. Rodriguez, M. J. Kilborn, X. K. Liu, J. C. Pezzullo, and R. L. Woosley, “Drug-induced QT prolongation in women during the menstrual cycle,” Journal of the American Medical Association, vol. 285, no. 10, pp. 1322–1326, 2001. View at Google Scholar · View at Scopus
  101. R. Hreiche, P. Morissette, H. Zakrzewski-Jakubiak, and J. Turgeon, “Gender-related differences in drug-induced prolongation of cardiac repolarization in prepubertal guinea pigs,” Journal of Cardiovascular Pharmacology and Therapeutics, vol. 14, no. 1, pp. 28–37, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. C. Möller and R. Netzer, “Effects of estradiol on cardiac ion channel currents,” European Journal of Pharmacology, vol. 532, no. 1-2, pp. 44–49, 2006. View at Publisher · View at Google Scholar · View at Scopus
  103. B. D. Johnson, W. Zheng, K. S. Korach, T. Scheuer, W. A. Catterall, and G. M. Rubanyi, “Increased expression of the cardiac L-type calcium channel in estrogen receptor-deficient mice,” Journal of General Physiology, vol. 110, no. 2, pp. 135–140, 1997. View at Publisher · View at Google Scholar · View at Scopus
  104. K. Ueno, “Gender differences in pharmacokinetics of anesthetics,” Japanese Journal of Anesthesiology, vol. 58, no. 1, pp. 51–58, 2009. View at Google Scholar · View at Scopus
  105. C. A. Frye and J. E. Duncan, “Progesterone metabolites, effective at the GABA(A) receptor complex, attenuate pain sensitivity in rats,” Brain Research, vol. 643, no. 1-2, pp. 194–203, 1994. View at Google Scholar · View at Scopus
  106. T. J. Nicolson, H. R. Mellor, and R. R. A. Roberts, “Gender differences in drug toxicity,” Trends in Pharmacological Sciences, vol. 31, no. 3, pp. 108–114, 2010. View at Publisher · View at Google Scholar · View at Scopus
  107. Y. Tsuchiya, M. Nakajima, S. Kyo, T. Kanaya, M. Inoue, and T. Yokoi, “Human CYP1B1 is regulated by estradiol via estrogen receptor,” Cancer Research, vol. 64, no. 9, pp. 3119–3125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. K. M. Wu and J. G. Farrelly, “Regulatory perspectives of Type II prodrug development and time-dependent toxicity management: nonclinical Pharm/Tox analysis and the role of comparative toxicology,” Toxicology, vol. 236, no. 1-2, pp. 1–6, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. N. K. Ostrom, “Women with asthma: a review of potential variables and preferred medical management,” Annals of Allergy, Asthma and Immunology, vol. 96, no. 5, pp. 655–665, 2006. View at Google Scholar · View at Scopus
  110. A. A. Miller, T. M. de Silva, K. A. Jackman, and C. G. Sobey, “Effect of gender and sex hormones on vascular oxidative stress,” Clinical and Experimental Pharmacology and Physiology, vol. 34, no. 10, pp. 1037–1043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  111. E. D. Kharasch, D. Mautz, T. Senn, G. Lentz, and K. Cox, “Menstrual cycle variability in midazolam pharmacokinetics,” Journal of Clinical Pharmacology, vol. 39, no. 3, pp. 275–280, 1999. View at Google Scholar · View at Scopus
  112. A. K. Shah, L. LaBoy-Goral, N. Scott, T. Morse, and G. Apseloff, “Pharmacokinetics and safety of oral eletriptan during different phases of the menstrual cycle in healthy volunteers,” Journal of Clinical Pharmacology, vol. 41, no. 12, pp. 1339–1344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  113. R. Z. Harris, S. M. Tsunoda, P. Mroczkowski, H. Wong, and L. Z. Benet, “The effects of menopause and hormone replacement therapies on prednisolone and erythromycin pharmacokinetics,” Clinical Pharmacology and Therapeutics, vol. 59, no. 4, pp. 429–435, 1996. View at Publisher · View at Google Scholar · View at Scopus
  114. O. C. Umeh and J. S. Currier, “Sex differences in pharmacokinetics and toxicity of antiretroviral therapy,” Expert Opinion on Drug Metabolism and Toxicology, vol. 2, no. 2, pp. 273–283, 2006. View at Publisher · View at Google Scholar · View at Scopus