Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 235216, 9 pages
http://dx.doi.org/10.1155/2011/235216
Research Article

Equal Force Recovery in Dysferlin-Deficient and Wild-Type Muscles Following Saponin Exposure

Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA

Received 28 April 2011; Revised 24 June 2011; Accepted 19 July 2011

Academic Editor: Robert J. Bloch

Copyright © 2011 Piming Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Bashir, S. Britton, T. Strachan et al., “A gene related to caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B,” Nature Genetics, vol. 20, no. 1, pp. 37–42, 1998. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Liu, M. Aoki, I. Illa et al., “Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy,” Nature Genetics, vol. 20, no. 1, pp. 31–36, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. I. Illa, C. Serrano-Munuera, E. Gallardo et al., “Distal anterior compartment myopathy: a dysferlin mutation causing a new muscular dystrophy phenotype,” Annals of Neurology, vol. 49, no. 1, pp. 130–134, 2001. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Kuru, F. Yasuma, T. Wakayama et al., “A patient with limb girdle muscular dystrophy type 2B (LGMD2B) manifesting cardiomyopathy,” Clinical Neurology, vol. 44, no. 6, pp. 375–378, 2004. View at Google Scholar · View at Scopus
  5. R. Han, D. Bansal, K. Miyake et al., “Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury,” Journal of Clinical Investigation, vol. 117, no. 7, pp. 1805–1813, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. L. V. B. Anderson, K. Davison, J. A. Moss et al., “Dysferlin is a plasma membrane protein and is expressed early in human development,” Human Molecular Genetics, vol. 8, no. 5, pp. 855–861, 1999. View at Google Scholar · View at Scopus
  7. D. Bansal, K. Miyake, S. S. Vogel et al., “Defective membrane repair in dysferlin-deficient muscular dystrophy,” Nature, vol. 423, no. 6936, pp. 168–172, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Bansal and K. P. Campbell, “Dysferlin and the plasma membrane repair in muscular dystrophy,” Trends in Cell Biology, vol. 14, no. 4, pp. 206–213, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. R. Han and K. P. Campbell, “Dysferlin and muscle membrane repair,” Current Opinion in Cell Biology, vol. 19, no. 4, pp. 409–416, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. W. P. Thorpe, M. Toner, R. M. Ezzell, R. G. Tompkins, and M. L. Yarmush, “Dynamics of photoinduced cell plasma membrane injury,” Biophysical Journal, vol. 68, no. 5, pp. 2198–2206, 1995. View at Google Scholar · View at Scopus
  11. A. W. Girotti and M. R. Deziel, “Photodynamic action of protoporphyrin on resealed erythrocyte membranes: mechanisms of release of trapped markers,” Advances in Experimental Medicine and Biology, vol. 160, pp. 213–225, 1983. View at Google Scholar · View at Scopus
  12. C. Cai, H. Masumiya, N. Weisleder et al., “MG53 nucleates assembly of cell membrane repair machinery,” Nature Cell Biology, vol. 11, no. 1, pp. 56–64, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Keefe, L. Shi, S. Feske et al., “Perforin triggers a plasma membrane-repair response that facilitates CTL induction of apoptosis,” Immunity, vol. 23, no. 3, pp. 249–262, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. M. J. Spencer, C. M. Walsh, K. A. Dorshkind, E. M. Rodriguez, and J. G. Tidball, “Myonuclear apoptosis in dystrophic mdx muscle occurs by perforin-mediated cytotoxicity,” Journal of Clinical Investigation, vol. 99, no. 11, pp. 2745–2751, 1997. View at Google Scholar · View at Scopus
  15. T. Sugihara, N. Okiyama, M. Suzuki et al., “Definitive engagement of cytotoxic CD8 T cells in C protein-induced myositis, a murine model of polymyositis,” Arthritis and Rheumatism, vol. 62, no. 10, pp. 3088–3092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. L. E. Ramm, M. B. Whitlow, and M. M. Mayer, “Transmembrane channel formation by complement: functional analysis of the number of C5b6, C7, C8, and C9 molecules required for a single channel,” Proceedings of the National Academy of Sciences of the United States of America, vol. 79, no. 15, pp. 4751–4755, 1982. View at Google Scholar · View at Scopus
  17. L. E. Ramm, M. B. Whitlow, and M. M. Mayer, “Size of the transmembrane channels produced by complement proteins C5b-8,” Journal of Immunology, vol. 129, no. 3, pp. 1143–1146, 1982. View at Google Scholar · View at Scopus
  18. L. E. Ramm and M. M. Mayer, “Life-span and size of the trans-membrane channel formed by large doses of complement,” Journal of Immunology, vol. 124, no. 5, pp. 2281–2287, 1980. View at Google Scholar · View at Scopus
  19. M. E. Pipkin and J. Lieberman, “Delivering the kiss of death: progress on understanding how perforin works,” Current Opinion in Immunology, vol. 19, no. 3, pp. 301–308, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. C. J. Rosado, A. M. Buckle, R. H. P. Law et al., “A common fold mediates vertebrate defense and bacterial attack,” Science, vol. 317, no. 5844, pp. 1548–1551, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. A. Hadders, D. X. Beringer, and P. Gros, “Structure of C8α-MACPF reveals mechanism of membrane attack in complement immune defense,” Science, vol. 317, no. 5844, pp. 1552–1554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. R. Han, E. M. Frett, J. R. Levy et al., “Genetic ablation of complement C3 attenuates muscle pathology in dysferlin-deficient mice,” Journal of Clinical Investigation, vol. 120, no. 12, pp. 4366–4374, 2010. View at Publisher · View at Google Scholar
  23. H. A. Lashuel and P. T. Lansbury, “Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?” Quarterly Reviews of Biophysics, vol. 39, no. 2, pp. 167–201, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. Y. Yoshiike, R. Kayed, S. C. Milton, A. Takashima, and C. G. Glabe, “Pore-forming proteins share structural and functional homology with amyloid oligomers,” NeuroMolecular Medicine, vol. 9, no. 3, pp. 270–275, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Spuler, M. Carl, J. Zabojszcza et al., “Dysferlin-deficient muscular dystrophy features amyloidosis,” Annals of Neurology, vol. 63, no. 3, pp. 323–328, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Bischofberger, M. R. Gonzalez, and F. G. van der Goot, “Membrane injury by pore-forming proteins,” Current Opinion in Cell Biology, vol. 21, no. 4, pp. 589–595, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. A. Johnson, M. O. Gray, J. S. Karliner, C. H. Chen, and D. Mochly-Rosen, “An improved permeabilization protocol for the introduction of peptides into cardiac myocytes: application to protein kinase C research,” Circulation Research, vol. 79, no. 6, pp. 1086–1099, 1996. View at Google Scholar · View at Scopus
  28. S. Shany, A. W. Bernheimer, P. S. Grushoff, and K. S. Kim, “Evidence for membrane cholesterol as the common binding site for cereolysin, streptolysin O and saponin,” Molecular and Cellular Biochemistry, vol. 3, no. 3, pp. 179–186, 1974. View at Google Scholar · View at Scopus
  29. I. Walev, S. C. Bhakdi, F. Hofmann et al., “Delivery of proteins into living cells by reversible membrane permeabilization with streptolysin-O,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3185–3190, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. O. Moskovich and Z. Fishelson, “Live cell imaging of outward and inward vesiculation induced by the complement C5b-9 complex,” Journal of Biological Chemistry, vol. 282, no. 41, pp. 29977–29986, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Husmann, E. Beckmann, K. Boller et al., “Elimination of a bacterial pore-forming toxin by sequential endocytosis and exocytosis,” FEBS Letters, vol. 583, no. 2, pp. 337–344, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. V. Idone, C. Tam, J. W. Goss, D. Toomre, M. Pypaert, and N. W. Andrews, “Repair of injured plasma membrane by rapid Ca2+ dependent endocytosis,” Journal of Cell Biology, vol. 180, no. 5, pp. 905–914, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Coral-Vazquez, R. D. Cohn, S. A. Moore et al., “Disruption of the sarcoglycan-sarcospan complex in vascular smooth muscle: a novel mechanism for cardiomyopathy and muscular dystrophy,” Cell, vol. 98, no. 4, pp. 465–474, 1999. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Durbeej, R. D. Conn, R. F. Hrstka et al., “Disruption of the β-sarcoglycan gene reveals pathogenetic complexity of limb-girdle muscular dystrophy type 2E,” Molecular Cell, vol. 5, no. 1, pp. 141–151, 2000. View at Google Scholar · View at Scopus
  35. R. Han, M. Kanagawa, T. Yoshida-Moriguchi et al., “Basal lamina strengthens cell membrane integrity via the laminin G domain-binding motif of α-dystroglycan,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12573–12579, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. J. H. Nadeau, J. B. Singer, A. Matin, and E. S. Lander, “Analysing complex genetic traits with chromosome substitution strains,” Nature Genetics, vol. 24, no. 3, pp. 221–225, 2000. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Ho, C. M. Post, L. R. Donahue et al., “Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency,” Human Molecular Genetics, vol. 13, no. 18, pp. 1999–2010, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. W. Lostal, M. Bartoli, N. Bourg et al., “Efficient recovery of dysferlin deficiency by dual adeno-associated vector-mediated gene transfer,” Human Molecular Genetics, vol. 19, no. 10, Article ID ddq065, pp. 1897–1907, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. G. Kroemer, L. Galluzzi, and C. Brenner, “Mitochondrial membrane permeabilization in cell death,” Physiological Reviews, vol. 87, no. 1, pp. 99–163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  40. M. F. M. Engel, L. Khemtémourian, C. C. Kleijer et al., “Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 16, pp. 6033–6038, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. X. Wang, W. Xie, Y. Zhang et al., “Cardioprotection of ischemia/reperfusion injury by cholesterol-dependent MG53-mediated membrane repair,” Circulation Research, vol. 107, no. 1, pp. 76–83, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Díaz-Manera, T. Touvier, A. Dellavalle et al., “Partial dysferlin reconstitution by adult murine mesoangioblasts is sufficient for full functional recovery in a murine model of dysferlinopathy,” Cell Death and Disease, vol. 1, no. 8, article e61, 2010. View at Publisher · View at Google Scholar
  43. M. Krahn, N. Wein, M. Bartoli et al., “A naturally occurring human minidysferlin protein repairs sarcolemmal lesions in a mouse model of dysferlinopathy,” Science Translational Medicine, vol. 2, no. 50, Article ID 50ra69, 2010. View at Publisher · View at Google Scholar
  44. M. Husmann, K. Dersch, W. Bobkiewicz, E. Beckmann, G. Veerachato, and S. Bhakdi, “Differential role of p38 mitogen activated protein kinase for cellular recovery from attack by pore-forming S. aureus α-toxin or streptolysin O,” Biochemical and Biophysical Research Communications, vol. 344, no. 4, pp. 1128–1134, 2006. View at Publisher · View at Google Scholar
  45. L. E. Ramm, M. B. Whitlow, and C. L. Koski, “Elimination of complement channels from the plasma membranes of U937, a nucleated mammalian cell line: temperature dependence of the elimination rate,” Journal of Immunology, vol. 131, no. 3, pp. 1411–1415, 1983. View at Google Scholar · View at Scopus
  46. J. D. Gumerson, Z. T. Kabaeva, C. S. Davis, J. A. Faulkner, and D. E. Michele, “Soleus muscle in glycosylation-deficient muscular dystrophy is protected from contraction-induced injury,” American Journal of Physiology, vol. 299, no. 6, pp. C1430–C1440, 2010. View at Publisher · View at Google Scholar · View at Scopus