Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 274578, 9 pages
http://dx.doi.org/10.1155/2011/274578
Research Article

Plant and Fungal Food Components with Potential Activity on the Development of Microbial Oral Diseases

1Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy
2DIP.TE.RIS., University of Genoa, Corso Europa 26, 16132 Genoa, Italy
3Department of Cariology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, 40530 Götegborg, Sweden
4Department of Microbial Diseases, UCL Eastman Dental Institute, 256 Gray's Inn Road, London WC1X 8LD, UK
5Sezione di Microbiologia, Dipartimento di Patologia e Diagnostica, Università di Verona, Strada Le Grazie 8, 37134 Verona, Italy
6Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands

Received 15 June 2011; Accepted 19 July 2011

Academic Editor: Carla Pruzzo

Copyright © 2011 Maria Daglia et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

This paper reports the content in macronutrients, free sugars, polyphenols, and inorganic ions, known to exert any positive or negative action on microbial oral disease such as caries and gingivitis, of seven food/beverages (red chicory, mushroom, raspberry, green and black tea, cranberry juice, dark beer). Tea leaves resulted the richest material in all the detected ions, anyway tea beverages resulted the richest just in fluoride. The highest content in zinc was in chicory, raspberry and mushroom. Raspberry is the richest food in strontium and boron, beer in selenium, raspberry and mushroom in copper. Beer, cranberry juice and, especially green and black tea are very rich in polyphenols, confirming these beverages as important sources of such healthy substances. The fractionation, carried out on the basis of the molecular mass (MM), of the water soluble components occurring in raspberry, chicory, and mushroom extracts (which in microbiological assays revealed the highest potential action against oral pathogens), showed that both the high and low MM fractions are active, with the low MM fractions displaying the highest potential action for all the fractionated extracts. Our findings show that more compounds that can play a different active role occur in these foods.