Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 293161, 8 pages
Research Article

Rapeseed Oil Monoester of Ethylene Glycol Monomethyl Ether as a New Biodiesel

Xi'an Research Institute of High Technology, Xi'an, Shaanxi 710025, China

Received 19 July 2010; Revised 8 December 2010; Accepted 3 January 2011

Academic Editor: R. S. Tjeerdema

Copyright © 2011 Jiang Dayong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. Crooles, “New findings on combustion behavior of oxygenated synthetic diesel fuels,” Biomass and Bioenergy, vol. 30, pp. 461–468, 2006. View at Google Scholar
  2. M. Pugazhvadivu and K. Jeyachandran, “Experimental studies of the impact of CETANERTM on diesel combustion and emission,” Renewable Energy, vol. 30, pp. 2189–2202, 2005. View at Google Scholar
  3. G. Kaplan, R. Arslan, and A. Surmen, “Modeling the effects of oxygenated fuels and split injections on DI diesel engine performance and emission,” Energy Sources, vol. A28, pp. 751–755, 2006. View at Google Scholar
  4. N. Usta, E. Ozturk, O. Can, and E. Conkur, “Emission characteristics of a navistar 7.3 L turbo diesel fueled with blends of oxygenates and diesel,” Energy Conversion and Management, vol. 46, pp. 741–755, 2005. View at Google Scholar
  5. M. Lapuerta, O. Armas, and R. Ballesteros, “Oxygenated fuels for particulate emissions reduction in heavy duty DI diesel engines with common rail fuel injection,” Fernandez Fuel, vol. 84, pp. 773–780, 2005. View at Google Scholar
  6. M. Cetinkaya and F. Karaosmanoglu, “The effect of oxygenated fuels on emissions from a modern heavy-duty diesel engine,” Energy & Fuels, vol. 19, pp. 645–652, 2007. View at Google Scholar
  7. D. Y. C. Leung, X. Wu, and M. K. H. Leung, “A review on biodiesel production using catalyzed transesterification,” Applied Energy, vol. 87, no. 4, pp. 1083–1095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Feng, Structure Analysis and Identification of Organic Compound, Defense Industry, Beijing, China, 2003.
  9. G. Fontaras, G. Karavalakis, M. Kousoulidou et al., “Effects of low concentration biodiesel blends application on modern passenger cars. Part 2: impact on carbonyl compound emissions,” Environmental Pollution, vol. 158, pp. 2496–2504, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Wang, Z. Huang, O. A. Kuti, W. Zhang, and K. Nishida, “Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure,” International Journal of Heat and Fluid Flow, vol. 31, no. 4, pp. 659–666, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. I. M. Atadashi, M. K. Aroua, and A. A. Aziz, “High quality biodiesel and its diesel engine application: a review,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 1999–2009, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. K. T. Tan, M. M. Gui, K. T. Lee, and A. R. Mohamed, “An optimized study of methanol and ethanol in supercritical alcohol technology for biodiesel production,” Journal of Supercritical Fluids, vol. 53, no. 1–3, pp. 82–87, 2010. View at Publisher · View at Google Scholar · View at Scopus