Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 382586, 14 pages
http://dx.doi.org/10.1155/2011/382586
Research Article

Dynamic Changes in Sarcoplasmic Reticulum Structure in Ventricular Myocytes

Department of Physiology & Biophysics, University of Washington, Box 357290, Seattle, WA 98195, USA

Received 29 April 2011; Accepted 9 August 2011

Academic Editor: Xupei Huang

Copyright © 2011 Amanda L. Vega et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Franzini-Armstrong, F. Protasi, and V. Ramesh, “Shape, size, and distribution of Ca2+ release units and couplons in skeletal and cardiac muscles,” Biophysical Journal, vol. 77, no. 3, pp. 1528–1539, 1999. View at Google Scholar · View at Scopus
  2. C. Franzini-Armstrong and F. Protasi, “Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions,” Physiological Reviews, vol. 77, no. 3, pp. 699–729, 1997. View at Google Scholar · View at Scopus
  3. A. Fabiato, “Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum,” American journal of physiology, vol. 245, no. 1, pp. C1–C14, 1983. View at Google Scholar · View at Scopus
  4. H. Cheng, W. J. Lederer, and M. B. Cannell, “Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle,” Science, vol. 262, no. 5134, pp. 740–744, 1993. View at Google Scholar · View at Scopus
  5. A. M. Gómez, H. H. Valdivia, H. Cheng et al., “Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure,” Science, vol. 276, no. 5313, pp. 800–806, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. C. Soeller and M. B. Cannell, “Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad,” Biophysical Journal, vol. 73, no. 1, pp. 97–111, 1997. View at Google Scholar · View at Scopus
  7. M. Inoue and J. H. B. Bridge, “Ca2+ sparks in rabbit ventricular myocytes evoked by action potentials: involvement of clusters of L-type Ca2+ channels,” Circulation Research, vol. 92, no. 5, pp. 532–538, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. E. Devic, Y. Xiang, D. Gould, and B. Kobilka, “β-Adrenergic receptor subtype-specific signaling in cardiac myocytes from β1 and β2 adrenoceptor knockout mice,” Molecular Pharmacology, vol. 60, no. 3, pp. 577–583, 2001. View at Google Scholar · View at Scopus
  9. T. Shioya, “A simple technique for isolating healthy heart cells from mouse models,” Journal of Physiological Sciences, vol. 57, no. 6, pp. 327–335, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Y. Zhou, S. Q. Wang, W. Z. Zhu et al., “Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 279, no. 1, pp. H429–H436, 2000. View at Google Scholar · View at Scopus
  11. L. Fliegel, K. Burns, D. H. MacLennan, R. A. F. Reithmeier, and M. Michalak, “Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skeletal muscle sarcoplasmic reticulum,” Journal of Biological Chemistry, vol. 264, no. 36, pp. 21522–21528, 1989. View at Google Scholar · View at Scopus
  12. A. D. Zadeh, Y. Cheng, H. Xu et al., “Kif5b is an essential forward trafficking motor for the Kv1.5 cardiac potassium channel,” Journal of Physiology, vol. 587, no. 19, pp. 4565–4574, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Wei, A. Guo, B. Chen et al., “T-tubule remodeling during transition from hypertrophy to heart failure,” Circulation Research, vol. 107, no. 4, pp. 520–531, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. R. C. Balijepalli, J. D. Foell, D. D. Hall, J. W. Hell, and T. J. Kamp, “Localization of cardiac L-type Ca2+ channels to a caveolar macromolecular signaling complex is required for β2-adrenergic regulation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 19, pp. 7500–7505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Yi, J. L. M. Leunissen, G. M. Shi, C. A. Gutekunst, and S. M. Hersch, “A novel procedure for pre-embedding double immunogold-silver labeling at the ultrastructural level,” Journal of Histochemistry and Cytochemistry, vol. 49, no. 3, pp. 279–284, 2001. View at Google Scholar · View at Scopus
  16. E. M. Merzlyak, J. Goedhart, D. Shcherbo et al., “Bright monomeric red fluorescent protein with an extended fluorescence lifetime,” Nature Methods, vol. 4, no. 7, pp. 555–557, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. P. Asghari, M. Schulson, D. R. L. Scriven, G. Martens, and E. D. W. Moore, “Axial tubules of rat ventricular myocytes form multiple junctions with the sarcoplasmic reticulum,” Biophysical Journal, vol. 96, no. 11, pp. 4651–4660, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. M. S. Forbes and N. Sperelakis, “The membrane systems and cytoskeletal elements of mammalian myocardial cells,” Cell and Muscle Motility, vol. 3, pp. 89–155, 1983. View at Google Scholar · View at Scopus
  19. C. M. Waterman-Storer and E. D. Salmon, “Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms,” Current Biology, vol. 8, no. 14, pp. 798–806, 1998. View at Google Scholar · View at Scopus
  20. C. Lee and L. B. Chen, “Dynamic behavior of endoplasmic reticulum in living cells,” Cell, vol. 54, no. 1, pp. 37–46, 1988. View at Google Scholar · View at Scopus
  21. M. Terasaki, L. B. Chen, and K. Fujiwara, “Microtubules and the endoplasmic reticulum are highly interdependent structures,” Journal of Cell Biology, vol. 103, no. 4, pp. 1557–1568, 1986. View at Google Scholar · View at Scopus
  22. M. J. Woźniak, B. Bola, K. Brownhill, Y. C. Yang, V. Levakova, and V. J. Allan, “Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells,” Journal of Cell Science, vol. 122, no. 12, pp. 1979–1989, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. P. Bouchard, S. M. Penningroth, A. Cheung, C. Gagnon, and C. W. Bardin, “Erythro-9-[3-(2-hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 2, pp. 1033–1036, 1981. View at Google Scholar · View at Scopus
  24. B. E. Flucher and C. Franzini-Armstrong, “Formation of junctions involved in excitation-contraction coupling in skeletal and cardiac muscle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 15, pp. 8101–8106, 1996. View at Publisher · View at Google Scholar · View at Scopus
  25. D. R. L. Scriven, P. Dan, and E. D. W. Moore, “Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes,” Biophysical Journal, vol. 79, no. 5, pp. 2682–2691, 2000. View at Google Scholar · View at Scopus
  26. I. D. Jayasinghe, M. B. Cannell, and C. Soeller, “Organization of ryanodine receptors, transverse tubules, and sodium-calcium exchanger in rat myocytes,” Biophysical Journal, vol. 97, no. 10, pp. 2664–2673, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Chopra, T. Yang, P. Asghari et al., “Ablation of triadin causes loss of cardiac Ca2+ release units, impaired excitation-contraction coupling, and cardiac arrhythmias,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 18, pp. 7636–7641, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. C. Franzini-Armstrong, F. Protasi, and P. Tijskens, “The assembly of calcium release units in cardiac muscle,” Annals of the New York Academy of Sciences, vol. 1047, pp. 76–85, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Bola and V. Allan, “How and why does the endosplasmic reticulum move?” Biochemical Society Transactions, vol. 37, no. 5, pp. 961–965, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. A. M. Gómez, B. G. Kerfant, and G. Vassort, “Microtubule disruption modulates Ca2+ signaling in rat cardiac myocytes,” Circulation Research, vol. 86, no. 1, pp. 30–36, 2000. View at Google Scholar · View at Scopus
  31. G. Iribe, C. W. Ward, P. Camelliti et al., “Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate,” Circulation Research, vol. 104, no. 6, pp. 787–795, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. B. G. Kerfant, G. Vassort, and A. M. Gómez, “Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes,” Circulation Research, vol. 88, no. 7, pp. E59–E65, 2001. View at Google Scholar · View at Scopus
  33. M. E. Loewen, Z. Wang, J. Eldstrom et al., “Shared requirement for dynein function and intact microtubule cytoskeleton for normal surface expression of cardiac potassium channels,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 296, no. 1, pp. H71–H83, 2009. View at Publisher · View at Google Scholar · View at Scopus
  34. W. S. Choi, A. Khurana, R. Mathur, V. Viswanathan, D. F. Steele, and D. Fedida, “Kv1.5 surface expression is modulated by retrograde trafficking of newly endocytosed channels by the dynein motor,” Circulation Research, vol. 97, no. 4, pp. 363–371, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. U. Dhani, R. Mohammad-Panah, N. Ahmed, C. Ackerley, M. Ramjeesingh, and C. E. Bear, “Evidence for a functional interaction between the ClC-2 chloride channel and the retrograde motor dynein complex,” Journal of Biological Chemistry, vol. 278, no. 18, pp. 16262–16270, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. J. S. Mitcheson, J. C. Hancox, and A. J. Levi, “Cultured adult cardiac myocytes: future applications, culture methods, morphological and electrophysiological properties,” Cardiovascular Research, vol. 39, no. 2, pp. 280–300, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. R. N. Leach, J. C. Desai, and C. H. Orchard, “Effect of cytoskeleton disruptors on L-type Ca channel distribution in rat ventricular myocytes,” Cell Calcium, vol. 38, no. 5, pp. 515–526, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. S. M. Penningroth, “Erythro-9-[3-(2-hydroxynonyl)]adenine and Vanadate as probes for microtubule-based cytoskeletal mechanochemistry,” Methods in Enzymology, vol. 134, pp. 477–487, 1986. View at Publisher · View at Google Scholar · View at Scopus
  39. P. F. Mery, C. Pavoine, F. Pecker, and R. Fischmeister, “Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes,” Molecular Pharmacology, vol. 48, no. 1, pp. 121–130, 1995. View at Google Scholar · View at Scopus