Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 476723, 8 pages
Research Article

Construction, Characterization, and Preliminary BAC-End Sequence Analysis of a Bacterial Artificial Chromosome Library of the Tea Plant (Camellia sinensis)

1School of Plant Sciences, Arizona Genomics Institute, The University of Arizona, Tucson AZ 85721, USA
2Department of Tea Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
3BIO5 Institute, University of Arizona, Tucson AZ 85721, USA

Received 29 July 2010; Accepted 28 October 2010

Academic Editor: Yong Lim

Copyright © 2011 Jinke Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We describe the construction and characterization of a publicly available BAC library for the tea plant, Camellia sinensis. Using modified methods, the library was constructed with the aim of developing public molecular resources to advance tea plant genomics research. The library consists of a total of 401,280 clones with an average insert size of 135 kb, providing an approximate coverage of 13.5 haploid genome equivalents. No empty vector clones were observed in a random sampling of 576 BAC clones. Further analysis of 182 BAC-end sequences from randomly selected clones revealed a GC content of 40.35% and low chloroplast and mitochondrial contamination. Repetitive sequence analyses indicated that LTR retrotransposons were the most predominant sequence class (86.93%–87.24%), followed by DNA retrotransposons (11.16%–11.69%). Additionally, we found 25 simple sequence repeats (SSRs) that could potentially be used as genetic markers.