Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 509043, 8 pages
Research Article

A Metabonomic Approach to Analyze the Dexamethasone-Induced Cleft Palate in Mice

1State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041, China
2West China College of Pharmacy, Sichuan University, Chengdu 610041, China
3State Key Laboratory of Stomatology, Sichuan University, No.14 Sec 3 Renminnan Road, Chengdu 610041, China

Received 6 February 2010; Revised 3 April 2010; Accepted 8 June 2010

Academic Editor: Mika Ala-Korpela

Copyright © 2011 Jinglin Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Mice models are an important way to understand the relation between the fetus with cleft palate and changes of maternal biofluid. This paper aims to develop a metabonomics approach to analyze dexamethasone-induced cleft palate in pregnant C57BL/6J mice and to study the relationship between the change of endogenous small molecular metabolites in maternal plasma and the incidence of cleft palate. To do so, pregnant mice were randomly divided into two groups. The one group was injected with dexamethasone. On E17.5th day, the incident rates of cleft palate from embryos in two groups were calculated. The H1-NMR spectra from the metabolites in plasma in two groups was collected at same time. Then the data were analyzed using metabonomics methods (PCA and SIMCA). The results showed that the data from the two groups displayed distinctive characters, and the incidence of cleft palate were significantly different (P<.005). To conclude, this study demonstrates that the metabonomics approach is a powerful and effective method in detecting the abnormal metabolites from mother in the earlier period of embryos, and supports the idea that a change from dexamethasone induced in maternal metabolites plays an important role in the incidence of cleft palate.