Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011 (2011), Article ID 589414, 8 pages
http://dx.doi.org/10.1155/2011/589414
Review Article

Planar Cell Polarity Signaling Pathway in Congenital Heart Diseases

1Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
2Department of Biomedical Science, College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
3Department of Neurology, Newborn Brain Research Institute, University of California, San Francisco, CA 94143, USA

Received 21 July 2011; Accepted 31 August 2011

Academic Editor: J.-P. Jin

Copyright © 2011 Gang Wu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. M. Reamon-Buettner, K. Spanel-Borowski, and J. Borlak, “Bridging the gap between anatomy and molecular genetics for an improved understanding of congenital heart disease,” Annals of Anatomy, vol. 188, no. 3, pp. 213–220, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. M. D. Reller, M. J. Strickland, T. Riehle-Colarusso, W. T. Mahle, and A. Correa, “Prevalence of congenital heart defects in metropolitan atlanta, 1998–2005,” Journal of Pediatrics, vol. 153, no. 6, pp. 807–813, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. J. Henderson, S. J. Conway, N. D. E. Greene et al., “Cardiovascular defects associated with abnormalities in midline development in the Loop-tail mouse mutant,” Circulation Research, vol. 89, no. 1, pp. 6–12, 2001. View at Google Scholar · View at Scopus
  4. W. Zhou, L. Lin, A. Majumdar et al., “Modulation of morphogenesis by noncanonical Wnt signaling requires ATF/CREB family-mediated transcriptional activation of TGFβ2,” Nature Genetics, vol. 39, no. 10, pp. 1225–1234, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. H. S. Khalil, A. M. Saleh, and S. N. Subhani, “Maternal obesity and neonatal congenital cardiovascular defects,” International Journal of Gynecology and Obstetrics, vol. 102, no. 3, pp. 232–236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. J.-B. Huang, Y.-L. Liu, and X.-D. Lv, “Pathogenic mechanisms of congenital heart disease,” Fetal and Pediatric Pathology, vol. 29, no. 5, pp. 359–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Buckingham, S. Meilhac, and S. Zaffran, “Building the mammalian heart from two sources of myocardial cells,” Nature Reviews Genetics, vol. 6, no. 11, pp. 826–837, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Gessert and M. Kühl, “The multiple phases and faces of Wnt signaling during cardiac differentiation and development,” Circulation Research, vol. 107, no. 2, pp. 186–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. P. P. L. Tam, M. Parameswaran, S. J. Kinder, and R. P. Weinberger, “The allocation of epiblast cells to the embryonic heart and other mesodermal lineages: the role of ingression and tissue movement during gastrulation,” Development, vol. 124, no. 9, pp. 1631–1642, 1997. View at Google Scholar · View at Scopus
  10. A. F. M. Moorman, V. M. Christoffels, R. H. Anderson, and M. J. B. van den Hoff, “The heart-forming fields: one or multiple?” Philosophical Transactions of the Royal Society B, vol. 362, no. 1484, pp. 1257–1265, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. C. L. Cai, X. Liang, Y. Shi et al., “Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart,” Developmental Cell, vol. 5, no. 6, pp. 877–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. M. S. Rana, N. C. A. Horsten, S. Tesink-Taekema, W. H. Lamers, A. F. M. Moorman, and M. J. B. van den Hoff, “Trabeculated right ventricular free wall in the chicken heart forms by ventricularization of the myocardium initially forming the outflow tract,” Circulation Research, vol. 100, no. 7, pp. 1000–1007, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Gessert and M. Kühl, “Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis,” Developmental Biology, vol. 334, no. 2, pp. 395–408, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. D. Srivastava and E. N. Olson, “A genetic blueprint for cardiac development,” Nature, vol. 407, no. 6801, pp. 221–226, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. K. R. Chien, “Myocyte survival pathways and cardiomyopathy: implications for trastuzumab cardiotoxicity,” Seminars in Oncology, vol. 27, no. 6, pp. 9–14, 2000. View at Google Scholar · View at Scopus
  16. J. R. Schleiffarth, A. D. Person, B. J. Martinsen et al., “Wnt5a is required for cardiac outflow tract septation in mice,” Pediatric Research, vol. 61, no. 4, pp. 386–391, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. M. L. Kirby, T. F. Gale, and D. E. Stewart, “Neural crest cells contribute to normal aorticopulmonary septation,” Science, vol. 220, no. 4601, pp. 1059–1061, 1983. View at Google Scholar · View at Scopus
  18. V. Kaartinen, M. Dudas, A. Nagy, S. Sridurongrit, M. M. Lu, and J. A. Epstein, “Cardiac outflow tract defects in mice lacking ALK2 in neural crest cells,” Development, vol. 131, no. 14, pp. 3481–3490, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. B. P. T. Kruithof, M. J. B. van den Hoff, A. Wessels, and A. F. M. Moorman, “Cardiac muscle cell formation after development of the linear heart tube,” Developmental Dynamics, vol. 227, no. 1, pp. 1–13, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Henderson, H. M. Phillips, and B. Chaudhry, “Vang-like 2 and noncanonical Wnt signaling in outflow tract development,” Trends in Cardiovascular Medicine, vol. 16, no. 2, pp. 38–45, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. B. P. T. Kruithof, M. J. B. van den Hoff, S. Tesink-Taekema, and A. F. M. Moorman, “Recruitment of intra- and extracardiac cells into the myocardial lineage during mouse development,” Anatomical Record, Part A, vol. 271, no. 2, pp. 303–314, 2003. View at Google Scholar · View at Scopus
  22. M. T. Veeman, J. D. Axelrod, and R. T. Moon, “A second canon: functions and mechanisms of β-catenin-independent Wnt signaling,” Developmental Cell, vol. 5, no. 3, pp. 367–377, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. C. Y. Logan and R. Nusse, “The Wnt signaling pathway in development and disease,” Annual Review of Cell and Developmental Biology, vol. 20, pp. 781–810, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. P. Maye, J. Zheng, L. Li, and D. Wu, “Multiple mechanisms for Wnt11-mediated repression of the canonical Wnt signaling pathway,” Journal of Biological Chemistry, vol. 279, no. 23, pp. 24659–24665, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. B. Kilian, H. Mansukoski, F. C. Barbosa, F. Ulrich, M. Tada, and C. P. Heisenberg, “The role of Ppt/Wnt5 in regulating cell shape and movement during zebrafish gastrulation,” Mechanisms of Development, vol. 120, no. 4, pp. 467–476, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-P. Heisenberg, M. Tada, G. J. Rauch et al., “Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation,” Nature, vol. 405, no. 6782, pp. 76–81, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. T. J. Klein and M. Mlodzik, “Planar cell polarization: an emerging model points in the right direction,” Annual Review of Cell and Developmental Biology, vol. 21, pp. 155–176, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. T. Matsui, A. Raya, Y. Kawakami et al., “Noncanonical Wnt signaling regulates midline convergence of organ primordia during zebrafisn development,” Genes and Development, vol. 19, no. 1, pp. 164–175, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Pandur, M. Läsche, L. M. Eisenberg, and M. Kühl, “Wnt-11 activation of a non-canonical Wnt signalling pathway is required for cardiogenesis,” Nature, vol. 418, no. 6898, pp. 636–641, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Montcouquiol, R. A. Rachel, P. J. Lanford, N. G. Copeland, N. A. Jenkins, and M. W. Kelley, “Identification of Vangl2 and Scrb1 as planar polarity genes in mammals,” Nature, vol. 423, no. 6936, pp. 173–177, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. E. E. Davis and N. Katsanis, “Cell polarization defects in early heart development,” Circulation Research, vol. 101, no. 2, pp. 122–124, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. V. S. Golubkov, A. V. Chekanov, P. Cieplak et al., “The Wnt/planar cell polarity protein-tyrosine kinase-7 (PTK7) is a highly efficient proteolytic target of membrane type-1 matrix metalloproteinase: implications in cancer and embryogenesis,” Journal of Biological Chemistry, vol. 285, no. 46, pp. 35740–35749, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. M. Simons and M. Mlodzik, “Planar cell polarity signaling: from fly development to human disease,” Annual Review of Genetics, vol. 42, pp. 517–540, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. J. M. Pérez-Pomares, “Myocardial-coronary interactions: against the canon,” Circulation Research, vol. 102, no. 5, pp. 513–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. H. Strutt and D. Strutt, “Long-range coordination of planar polarity in Drosophila,” BioEssays, vol. 27, no. 12, pp. 1218–1227, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. H. M. Phillips, J. N. Murdoch, B. Chaudhry, A. J. Copp, and D. J. Henderson, “Vangl2 acts via RhoA signaling to regulate polarized cell movements during development of the proximal outflow tract,” Circulation Research, vol. 96, no. 3, pp. 292–299, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. N. S. Hamblet, N. Lijam, P. Ruiz-Lozano et al., “Dishevelled 2 is essential for cardiac outflow tract development, somite segmentation and neural tube closure,” Development, vol. 129, no. 24, pp. 5827–5838, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Torban, C. Kor, and P. Gros, “Van Gogh-like2 (Strabismus) and its role in planar cell polarity and convergent extension in vertebrates,” Trends in Genetics, vol. 20, no. 11, pp. 570–577, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Torban, H. J. Wang, N. Groulx, and P. Gros, “Independent mutations in mouse Vangl2 that cause neural tube defects in Looptail mice impair interaction with members of the Dishevelled family,” Journal of Biological Chemistry, vol. 279, no. 50, pp. 52703–52713, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Kibar, K. J. Vogan, N. Groulx, M. J. Justice, D. A. Underhill, and P. Gros, “Ltap, a mammalian homolog of Drosophila Strabismus/Van Gogh, is altered in the mouse neural tube mutant Loop-tail,” Nature Genetics, vol. 28, no. 3, pp. 251–255, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. E. Torban, A. M. Patenaude, S. Leclerc et al., “Genetic interaction between members of the Vangl family causes neural tube defects in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3449–3454, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. Z. Kibar, S. Salem, C. Bosoi et al., “Contribution of VANGL2 mutations to isolated neural tube defects,” Clinical Genetics, vol. 80, no. 1, pp. 76–82, 2011. View at Publisher · View at Google Scholar
  43. J. Shi, L. Zhang, and L. Wei, “Rho-kinase in development and heart failure: insights from genetic models,” Pediatric Cardiology, vol. 32, no. 3, pp. 297–304, 2011. View at Publisher · View at Google Scholar
  44. J. P. Starr, “Tetralogy of Fallot: yesterday and today,” World Journal of Surgery, vol. 34, no. 4, pp. 658–668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. E. Erdal, C. Erdal, G. Bulut et al., “Mutation analysis of the Vangl2 coding region revealed no common cause for tetralogy of fallot,” Journal of International Medical Research, vol. 35, no. 6, pp. 867–872, 2007. View at Google Scholar · View at Scopus
  46. C. Wansleeben, H. Feitsma, M. Montcouquiol, C. Kroon, E. Cuppen, and F. Meijlink, “Planar cell polarity defects and defective Vangl2 trafficking in mutants for the COPII gene Sec24b,” Development, vol. 137, no. 7, pp. 1067–1073, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Sato and A. Nakano, “Mechanisms of COPII vesicle formation and protein sorting,” FEBS Letters, vol. 581, no. 11, pp. 2076–2082, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. A. Wessels and J. M. Pérez-Pomares, “The epicardium and epicardially derived cells (EPDCs) as cardiac stem cells,” Anatomical Record, Part A, vol. 276, no. 1, pp. 43–57, 2004. View at Google Scholar · View at Scopus
  49. H. E. Olivey, L. A. Compton, and J. V. Barnett, “Coronary vessel development: the epicardium delivers,” Trends in Cardiovascular Medicine, vol. 14, no. 6, pp. 247–251, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. H. M. Phillips, V. Hildreth, J. D. Peat et al., “Non-cell-autonomous roles for the planar cell polarity gene vangl2 in development of the coronary circulation,” Circulation Research, vol. 102, no. 5, pp. 615–623, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. T. Goto, L. Davidson, M. Asashima, and R. Keller, “Planar cell polarity genes regulate polarized extracellular matrix deposition during frog gastrulation,” Current Biology, vol. 15, no. 8, pp. 787–793, 2005. View at Publisher · View at Google Scholar · View at Scopus
  52. J. B. Wallingford, “Vertebrate gastrulation: polarity genes control the matrix,” Current Biology, vol. 15, no. 11, pp. R414–R416, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Y. Rhee, X. Q. Zhao, R. J. B. Francis, G. Y. Huang, J. D. Mably, and C. W. Lo, “Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development,” Development, vol. 136, no. 18, pp. 3185–3193, 2009. View at Publisher · View at Google Scholar · View at Scopus
  54. D. L. Walker, S. J. Vacha, M. L. Kirby, and C. W. Lo, “Connexin43 deficiency causes dysregulation of coronary vasculogenesis,” Developmental Biology, vol. 284, no. 2, pp. 479–498, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. H. E. Olivey and E. C. Svensson, “Epicardial-myocardial signaling directing coronary vasculogenesis,” Circulation Research, vol. 106, no. 5, pp. 818–832, 2010. View at Publisher · View at Google Scholar · View at Scopus
  56. F. Feiguin, M. Hannus, M. Mlodzik, and S. Eaton, “The ankyrin repeat protein diego mediates frizzled-dependent planar polarization,” Developmental Cell, vol. 1, no. 1, pp. 93–101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Itoh, A. Jenny, M. Mlodzik, and S. Y. Sokol, “Centrosomal localization of Diversin and its relevance to Wnt signaling,” Journal of Cell Science, vol. 122, no. 20, pp. 3791–3798, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. T. Schwarz-Romond, C. Asbrand, J. Bakkers et al., “The ankyrin repeat protein diversin recruits casein kinase Iε to the β-catenin degradation complex and acts in both canonical Wnt and Wnt/JNK signaling,” Genes and Development, vol. 16, no. 16, pp. 2073–2084, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Moeller, A. Jenny, H. J. Schaeffer et al., “Diversin regulates heart formation and gastrulation movements in development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 43, pp. 15900–15905, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. D. Y. R. Stainier, “Zebrafish genetics and vertebrate heart formation,” Nature Reviews Genetics, vol. 2, no. 1, pp. 39–48, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Thisse and L. I. Zon, “Organogenesis—heart and blood formation from the zebrafish point of view,” Science, vol. 295, no. 5554, pp. 457–462, 2002. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Jenny, J. Reynolds-Kenneally, G. Das, M. Burnett, and M. Mlodzik, “Diego and Prickle regulate frizzled planar cell polarity signalling by competing for Dishevelled binding,” Nature Cell Biology, vol. 7, no. 7, pp. 691–697, 2005. View at Publisher · View at Google Scholar · View at Scopus
  63. C. Gao and Y.-G. Chen, “Dishevelled: the hub of Wnt signaling.,” Cellular Signalling, vol. 22, no. 5, pp. 717–727, 2010. View at Google Scholar · View at Scopus
  64. S. L. Etheridge, S. Ray, S. Li et al., “Murine dishevelled 3 functions in redundant pathways with dishevelled 1 and 2 in normal cardiac outflow tract, cochlea, and neural tube development,” PLoS Genetics, vol. 4, no. 11, Article ID e1000259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. C. C. Malbon and H.-Y. Wang, “Dishevelled: a mobile scaffold catalyzing development,” Current Topics in Developmental Biology, vol. 72, pp. 153–166, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. J. B. Wallingford and R. Habas, “The developmental biology of Dishevelled: an enigmatic protein governing cell fate and cell polarity,” Development, vol. 132, no. 20, pp. 4421–4436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. J. de Calisto, C. Araya, L. Marchant, C. F. Riaz, and R. Mayor, “Essential role of non-canonical Wnt signalling in neural crest migration,” Development, vol. 132, no. 11, pp. 2587–2597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. P. Pandur, D. Maurus, and M. Kühl, “Increasingly complex: new players enter the Wnt signaling network,” BioEssays, vol. 24, no. 10, pp. 881–884, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. L. M. Eisenberg and C. A. Eisenberg, “Wnt signal transduction and the formation of the myocardium,” Developmental Biology, vol. 293, no. 2, pp. 305–315, 2006. View at Publisher · View at Google Scholar · View at Scopus
  70. E. D. Cohen, Y. Tian, and E. E. Morrisey, “Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal,” Development, vol. 135, no. 5, pp. 789–798, 2008. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Brade, J. Männer, and M. Kühl, “The role of Wnt signalling in cardiac development and tissue remodelling in the mature heart,” Cardiovascular Research, vol. 72, no. 2, pp. 198–209, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. R. J. Garriock, S. L. D'Agostino, K. C. Pilcher, and P. A. Krieg, “Wnt11-R, a protein closely related to mammalian Wnt11, is required for heart morphogenesis in Xenopus,” Developmental Biology, vol. 279, no. 1, pp. 179–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. A. J. Mikels and R. Nusse, “Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context.,” PLoS Biology, vol. 4, no. 4, article e115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. A. Torres, J. A. Yang-Snyder, S. M. Purcell, A. A. DeMarais, L. L. McGrew, and R. T. Moon, “Activities of the Wnt-1 class of secreted signaling factors are antagonized by the Wnt-5A class and by a dominant negative cadherin in early Xenopus development,” Journal of Cell Biology, vol. 133, no. 5, pp. 1123–1137, 1996. View at Publisher · View at Google Scholar · View at Scopus
  75. V. C. Chen, R. Stull, D. Joo, X. Cheng, and G. Keller, “Notch signaling respecifies the hemangioblast to a cardiac fate,” Nature Biotechnology, vol. 26, no. 10, pp. 1169–1178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. K. E. Schroeder, M. L. Condic, L. M. Eisenberg, and H. J. Yost, “Spatially regulated translation in embryos: asymmetric expression of maternal Wnt-11 along the dorsal-ventral axis in Xenopus,” Developmental Biology, vol. 214, no. 2, pp. 288–297, 1999. View at Publisher · View at Google Scholar · View at Scopus
  77. M. Ku and D. A. Melton, “Xwnt-11: a maternally expressed Xenopus wnt gene,” Development, vol. 119, no. 4, pp. 1161–1173, 1993. View at Google Scholar · View at Scopus
  78. B. A. Afouda, J. Martin, F. Liu, A. Ciau-Uitz, R. Patient, and S. Hoppler, “GATA transcription factors integrate Wnt signalling during heart development,” Development, vol. 135, no. 19, pp. 3185–3190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A. Kispert, S. Vainio, L. Shen, D. H. Rowitch, and A. P. McMahon, “Proteoglycans are required for maintenance of Wnt-11 expression in the ureter tips,” Development, vol. 122, no. 11, pp. 3627–3637, 1996. View at Google Scholar · View at Scopus
  80. H. Kirikoshi, H. Sekihara, and M. Katoh, “Molecular cloning and characterization of human WNT11,” International Journal of Molecular Medicine, vol. 8, no. 6, pp. 651–656, 2001. View at Google Scholar · View at Scopus
  81. S. Ueno, G. Weidinger, T. Osugi et al., “Biphasic role for Wnt/β-catenin signaling in cardiac specification in zebrafish and embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 23, pp. 9685–9690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  82. C. A. Eisenberg and L. M. Eisenberg, “WNT11 promotes cardiac tissue formation of early mesoderm,” Developmental Dynamics, vol. 216, no. 1, pp. 45–58, 1999. View at Publisher · View at Google Scholar · View at Scopus
  83. M. P. Flaherty, A. Abdel-Latif, Q. Li et al., “Noncanonical Wnt11 signaling is sufficient to induce cardiomyogenic differentiation in unfractionated bone marrow mononuclear cells,” Circulation, vol. 117, no. 17, pp. 2241–2252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Koyanagi, J. Haendeler, C. Badorff et al., “Non-canonical Wnt signaling enhances differentiation of human circulating progenitor cells to cardiomyogenic cells,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 16838–16842, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. H. Terami, K. Hidaka, T. Katsumata, A. Iio, and T. Morisaki, “Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes,” Biochemical and Biophysical Research Communications, vol. 325, no. 3, pp. 968–975, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. I. I. Nagy, A. Railo, R. Rapila et al., “Wnt-11 signalling controls ventricular myocardium development by patterning N-cadherin and β-catenin expression,” Cardiovascular Research, vol. 85, no. 1, pp. 100–109, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. I. Shnitsar and A. Borchers, “PTK7 recruits dsh to regulate neural crest migration,” Development, vol. 135, no. 24, pp. 4015–4024, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. X. Lu, A. G. M. Borchers, C. Jolicoeur, H. Rayburn, J. C. Baker, and M. Tessier-Lavigne, “PTK7/CCK-4 is a novel regulator of planar cell polarity in vertebrates,” Nature, vol. 430, no. 6995, pp. 93–98, 2004. View at Publisher · View at Google Scholar · View at Scopus
  89. A. Paudyal, C. Damrau, V. L. Patterson et al., “The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear,” BMC Developmental Biology, vol. 10, article 87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  90. T. Toyofuku, H. Zhang, A. Kumanogoh et al., “Dual roles of Sema6D in cardiac morphogenesis through region-specific association of its receptor, Plexin-A1, with off-track and vascular endothelial growth factor receptor type 2,” Genes and Development, vol. 18, no. 4, pp. 435–447, 2004. View at Publisher · View at Google Scholar · View at Scopus
  91. D. Bilder and N. Perrimon, “Localization of apical epithelial determinants by the basolateral PDZ protein Scribble,” Nature, vol. 403, no. 6770, pp. 676–680, 2000. View at Publisher · View at Google Scholar · View at Scopus
  92. D. Bilder, M. Li, and N. Perrimon, “Cooperative regulation of cell polarity and growth by Drosophila tumor suppressors,” Science, vol. 289, no. 5476, pp. 113–116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  93. L. E. Dow, A. M. Brumby, R. Muratore et al., “hScrib is a functional homologue of the Drosophila tumour suppressor Scribble,” Oncogene, vol. 22, no. 58, pp. 9225–9230, 2003. View at Publisher · View at Google Scholar · View at Scopus
  94. Y. Qin, C. Capaldo, B. M. Gumbiner, and I. G. Macara, “The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin,” Journal of Cell Biology, vol. 171, no. 6, pp. 1061–1071, 2005. View at Publisher · View at Google Scholar · View at Scopus
  95. J. N. Murdoch, D. J. Henderson, K. Doudney et al., “Disruption of scribble (Scrb1) causes severe neural tube defects in the circletail mouse,” Human Molecular Genetics, vol. 12, no. 2, pp. 87–98, 2003. View at Publisher · View at Google Scholar · View at Scopus
  96. H. M. Phillips, H. J. Rhee, J. N. Murdoch et al., “Disruption of planar cell polarity signaling results in congenital heart defects and cardiomyopathy attributable to early cardiomyocyte disorganization,” Circulation Research, vol. 101, no. 2, pp. 137–145, 2007. View at Publisher · View at Google Scholar · View at Scopus
  97. L.-L. Ong, N. Kim, T. Mima, L. Cohen-Gould, and T. Mikawa, “Trabecular myocytes of the embryonic heart require N-cadherin for migratory unit identity,” Developmental Biology, vol. 193, no. 1, pp. 1–9, 1998. View at Publisher · View at Google Scholar · View at Scopus
  98. B. Bagatto, J. Francl, B. Liu, and Q. Liu, “Cadherin2 (N-cadherin) plays an essential role in zebrafish cardiovascular development,” BMC Developmental Biology, vol. 6, article 23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  99. M. Montcouquiol, N. Sans, D. Huss et al., “Asymmetric localization of Vangl2 and Fz3 indicate novel mechanisms for planar cell polarity in mammals,” Journal of Neuroscience, vol. 26, no. 19, pp. 5265–5275, 2006. View at Publisher · View at Google Scholar · View at Scopus
  100. J. N. Murdoch, R. A. Rachel, S. Shah et al., “Circletail, a new mouse mutant with severe neural tube defects: chromosomal localization and interaction with the loop-tail mutation,” Genomics, vol. 78, no. 1-2, pp. 55–63, 2001. View at Publisher · View at Google Scholar · View at Scopus