Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 635850, 6 pages
http://dx.doi.org/10.1155/2011/635850
Research Article

Autologous Peripheral Blood Mononuclear Cell Recognition of Autologous Proliferating Tumor Cells in the Context of a Patient-Specific Vaccine Trial

Cell Biology Laboratory, Hoag Cancer Center, Newport Beach, CA 92663, USA

Received 1 September 2010; Revised 10 February 2011; Accepted 27 February 2011

Academic Editor: Theresa L. Whiteside

Copyright © 2011 A. N. Cornforth et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. M. Kirkwood, S. Lee, S. Moschos et al., “Immunogenicity and antitumor effects of vaccination with peptide vaccine +/- granulocyte-monocyte colony-stimulating factor and/or IFIN-α2b in advanced metastatic melanoma: Eastern cooperative oncology group phase II trial E1696,” Clinical Cancer Research, vol. 15, no. 4, pp. 1443–1451, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. R. O. Dillman, S. R. Selvan, P. M. Schiltz et al., “Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report,” Cancer Biotherapy and Radiopharmaceuticals, vol. 24, no. 3, pp. 311–319, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. P. Schiltz and R. Dillman, “A theoretical approach for T-lymphocyte monitoring of autologous cancer vaccine therapy using autologous HLA-class I and HLA-class II constructs,” Cancer Biotherapy and Radiopharmaceuticals, vol. 19, no. 4, pp. 405–410, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Choi, M. Perrin, S. Hoffmann et al., “Dendritic cell-based vaccines in the setting of peripheral blood stem cell transplantation: CD34+ cell-depleted mobilized peripheral blood can serve as a source of potent dendritic cells,” Clinical Cancer Research, vol. 4, no. 11, pp. 2709–2716, 1998. View at Google Scholar · View at Scopus
  5. T. Luft, K. C. Pang, E. Thomas et al., “A serum-free culture model for studying the differentiation of human dendritic cells from adult CD34+ progenitor cells,” Experimental Hematology, vol. 26, no. 6, pp. 489–500, 1998. View at Google Scholar · View at Scopus
  6. R. O. Dillman, S. K. Nayak, and L. Beutel, “Establishing in vitro cultures of autologous tumor cells for use in active specific immunotherapy,” Journal of Immunotherapy, vol. 14, no. 1, pp. 65–69, 1993. View at Google Scholar
  7. R. O. Dillman, L. D. Beutel, A. N. Cornforth, and S. K. Nayak, “Short-term tumor cell lines from renal cell carcinoma for use as autologous tumor cell vaccines in the treatment of kidney cancer,” Cancer Biotherapy and Radiopharmaceuticals, vol. 15, no. 2, pp. 161–168, 2000. View at Google Scholar · View at Scopus
  8. S. R. Selvan, D. J. Carbonell, A. W. Fowler, A. R. Beatty, M. H. Ravindranath, and R. O. Dillman, “Establishment of stable cell lines for personalized melanoma cell vaccine,” Melanoma Research, vol. 20, no. 4, pp. 280–292, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. S. R. Selvan, R. O. Dillman, A. W. Fowler, D. J. Carbonell, and M. H. Ravindranath, “Monitoring response to treatment in melanoma patients: potential of a serum glycomic marker,” International Journal of Cancer, vol. 122, no. 6, pp. 1374–1383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Malyguine, S. L. Strobl, K. A. Shafer-Weaver et al., “A modified human ELISPOT assay to defect specific responses to primary tumor cell targets,” Journal of Translational Medicine, vol. 2, article 9, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Moodie, L. Price, C. Gouttefangeas et al., “Response definition criteria for ELISPOT assays revisited,” Cancer Immunology, Immunotherapy, vol. 59, no. 10, pp. 1489–1501, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. W. J. Lesterhuis, I. J. M. de Vries, G. J. Adema, and C. J. A. Punt, “Dendritic cell-based vaccines in cancer immunotherapy: an update on clinical and immunological results,” Annals of Oncology, vol. 15, supplement 4, pp. iv145–iv151, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. T. Maecker, J. Moon, S. Bhatia et al., “Impact of cryopreservation on tetramer, cytokine flow cytometry, and ELISPOT,” BMC Immunology, vol. 6, article 17, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. C. L. Slingluff, G. R. Petroni, K. A. Chianese-Bullock et al., “Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting,” Clinical Cancer Research, vol. 13, no. 21, pp. 6386–6395, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. A. Escobar, M. López, A. Serrano et al., “Dendritic cell immunizations alone or combined with low doses of interleukin-2 induce specific immune responses in melanoma patients,” Clinical and Experimental Immunology, vol. 142, no. 3, pp. 555–568, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. B. G. Redman, E. C. Alfred, J. Whitfield et al., “Phase Ib trial assessing autologous, tumor-pulsed dendritic cells as a vaccine administered with or without IL-2 in patients with metastatic melanoma,” Journal of Immunotherapy, vol. 31, no. 6, pp. 591–598, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. J. A. Marshall, T. H. Forster, D. M. Purdie et al., “Immunological characteristics correlating with clinical response to immunotherapy in patients with advanced metastatic melanoma,” Immunology and Cell Biology, vol. 84, no. 3, pp. 295–302, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. A. N. Cornforth, A. W. Fowler, D. J. Carbonell, and R. O. Dillman, “Resistance to the proapoptotic effects of interferon-gamma on melanoma cells used in patient-specific dendritic cell immunotherapy is associated with improved overall survival,” Cancer Immunology, Immunotherapy, vol. 60, no. 1, pp. 123–131, 2010. View at Publisher · View at Google Scholar
  19. A. E. Morelli and A. T. Larregina, “Apoptotic cell-based therapies against transplant rejection: role of recipient's dendritic cells,” Apoptosis, vol. 15, pp. 1083–1097, 2010. View at Publisher · View at Google Scholar · View at Scopus