Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 838040, 10 pages
http://dx.doi.org/10.1155/2011/838040
Research Article

In Vitro Culture Conditions for Maintaining a Complex Population of Human Gastrointestinal Tract Microbiota

Division of Microbiology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA

Received 13 January 2011; Revised 13 April 2011; Accepted 27 May 2011

Academic Editor: Eric C. Martens

Copyright © 2011 Bong-Soo Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Ley, D. A. Peterson, and J. I. Gordon, “Ecological and evolutionary forces shaping microbial diversity in the human intestine,” Cell, vol. 124, no. 4, pp. 837–848, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. R. J. Carman, R. L. Van Tassell, and T. D. Wilkins, “The normal intestinal microflora: ecology, variability and stability,” Veterinary and Human Toxicology, vol. 35, no. 1, pp. 11–14, 1993. View at Google Scholar · View at Scopus
  3. P. B. Eckburg, E. M. Bik, C. N. Bernstein et al., “Microbiology: diversity of the human intestinal microbial flora,” Science, vol. 308, no. 5728, pp. 1635–1638, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. H. Franks, H. J. M. Harmsen, G. C. Raangs, G. J. Jansen, F. Schut, and G. W. Welling, “Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes,” Applied and Environmental Microbiology, vol. 64, no. 9, pp. 3336–3345, 1998. View at Google Scholar · View at Scopus
  5. G. R. Gibson and M. B. Roberfroid, “Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics,” Journal of Nutrition, vol. 125, no. 6, pp. 1401–1412, 1995. View at Google Scholar · View at Scopus
  6. D. Kelly, S. Conway, and R. Aminov, “Commensal gut bacteria: mechanisms of immune modulation,” Trends in Immunology, vol. 26, no. 6, pp. 326–333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. R. Gill, M. Pop, R. T. DeBoy et al., “Metagenomic analysis of the human distal gut microbiome,” Science, vol. 312, no. 5778, pp. 1355–1359, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. A. L. Goodman, G. Kallstrom, J. J. Faith et al., “From the cover: extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 15, pp. 6252–6257, 2011. View at Google Scholar
  9. A. Suau, R. Bonnet, M. Sutren et al., “Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut,” Applied and Environmental Microbiology, vol. 65, no. 11, pp. 4799–4807, 1999. View at Google Scholar · View at Scopus
  10. J. Yuan, H. Wei, B. Zeng, H. Tang, W. Li, and Z. Zhang, “Impact of neonatal antibiotic treatment on the biodiversity of the murine intestinal Lactobacillus community,” Current Microbiology, vol. 60, no. 1, pp. 6–11, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. T. Vanhoutte, V. De Preter, E. De Brandt, K. Verbeke, J. Swings, and G. Huys, “Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii,” Applied and Environmental Microbiology, vol. 72, no. 9, pp. 5990–5997, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. P. van den Abbeele, C. Grootaert, M. Marzorati et al., “Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX,” Applied and Environmental Microbiology, vol. 76, no. 15, pp. 5237–5246, 2010. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Haarman and J. Knol, “Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula,” Applied and Environmental Microbiology, vol. 71, no. 5, pp. 2318–2324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. J. M. Delroisse, A. L. Boulvin, I. Parmentier, R. D. Dauphin, M. Vandenbol, and D. Portetelle, “Quantification of Bifidobacterium spp. and Lactobacillus spp. in rat fecal samples by real-time PCR,” Microbiological Research, vol. 163, no. 6, pp. 663–670, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Dethlefsen, S. Huse, M. L. Sogin, and D. A. Relman, “The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16s rRNA sequencing,” PLoS Biology, vol. 6, no. 11, article e280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Turnbaugh, M. Hamady, T. Yatsunenko et al., “A core gut microbiome in obese and lean twins,” Nature, vol. 457, no. 7228, pp. 480–484, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Rajilić-Stojanović, H. G. H. J. Heilig, D. Molenaar et al., “Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults,” Environmental Microbiology, vol. 11, no. 7, pp. 1736–1751, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. G. R. Gibson and X. Wang, “Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture,” FEMS Microbiology Letters, vol. 118, no. 1-2, pp. 121–128, 1994. View at Google Scholar · View at Scopus
  19. G. T. Macfarlane, S. Macfarlane, and G. R. Gibson, “Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon,” Microbial Ecology, vol. 35, no. 2, pp. 180–187, 1998. View at Publisher · View at Google Scholar · View at Scopus
  20. W. G. Harrelson and R. P. Mason, “Microsomal reduction of gentian violet. Evidence for cytochrome P-450-catalyzed free radical formation,” Molecular Pharmacology, vol. 22, no. 2, pp. 239–242, 1982. View at Google Scholar · View at Scopus
  21. J. J. McDonald and C. E. Cerniglia, “Biotransformation of gentian violet to leucogentian violet by human, rat, and chicken intestinal microflora,” Drug Metabolism and Disposition, vol. 12, no. 3, pp. 330–336, 1984. View at Google Scholar · View at Scopus
  22. N. Ben Omar and F. Ampe, “Microbial community dynamics during production of the Mexican fermented maize dough pozol,” Applied and Environmental Microbiology, vol. 66, no. 9, pp. 3664–3673, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Lopez, F. Ruiz-Larrea, L. Cocolin et al., “Design and evaluation of PCR primers for analysis of bacterial populations in wine by denaturing gradient gel electrophoresis,” Applied and Environmental Microbiology, vol. 69, no. 11, pp. 6801–6807, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. J. Chun, J.-H. Lee, Y. Jung et al., “EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences,” International Journal of Systematic and Evolutionary Microbiology, vol. 57, no. 10, pp. 2259–2261, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Fromin, J. Hamelin, S. Tarnawski et al., “Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns,” Environmental Microbiology, vol. 4, no. 11, pp. 634–643, 2002. View at Publisher · View at Google Scholar · View at Scopus
  26. K. Takai and K. Horikoshi, “Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes,” Applied and Environmental Microbiology, vol. 66, no. 11, pp. 5066–5072, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Rölleke, C. Gurtner, U. Drewello, R. Drewello, W. Lubitz, and R. Weissmann, “Analysis of bacterial communities on historical glass by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA,” Journal of Microbiological Methods, vol. 36, no. 1-2, pp. 107–114, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Mühling, J. Woolven-Allen, J. C. Murrell, and I. Joint, “Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities,” ISME Journal, vol. 2, no. 4, pp. 379–392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. J. Chun, K. Y. Kim, J.-H. Lee, and Y. Choi, “The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX titanium pyrosequencer,” BMC Microbiology, vol. 10, p. 101, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. S. M. Huse, J. A. Huber, H. G. Morrison, M. L. Sogin, and D. M. Welch, “Accuracy and quality of massively parallel DNA pyrosequencing,” Genome Biology, vol. 8, no. 7, article R143, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. P. D. Schloss, S. L. Westcott, T. Ryabin et al., “Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities,” Applied and Environmental Microbiology, vol. 75, no. 23, pp. 7537–7541, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. H. Cummings, “Fermentation in the human large intestine: evidence and implications for health,” The Lancet, vol. 1, no. 8335, pp. 1206–1209, 1983. View at Google Scholar · View at Scopus
  33. M. Wilson, Microbial Inhabitants of Humans: Their Ecology and Role in Health and Disease, Cambridge University Press, Cambridge, UK, 2005.
  34. M. A. Mahowald, F. E. Rey, H. Seedorf et al., “Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 14, pp. 5859–5864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. J. S. Suchodolski, J. Camacho, and J. M. Steiner, “Analysis of bacterial diversity in the canine duodenum, jejunum, ileum, and colon by comparative 16S rRNA gene analysis,” FEMS Microbiology Ecology, vol. 66, no. 3, pp. 567–578, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. X. Gao, E. Pujos-Guillot, J. F. Martin et al., “Metabolite analysis of human fecal water by gas chromatography/mass spectrometry with ethyl chloroformate derivatization,” Analytical Biochemistry, vol. 393, no. 2, pp. 163–175, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. Matsumoto, H. Tani, H. Ono, H. Ohishi, and Y. Benno, “Adhesive property of Bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin,” Current Microbiology, vol. 44, no. 3, pp. 212–215, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. W. Walker, S. H. Duncan, H. J. M. Harmsen, G. Holtrop, G. W. Welling, and H. J. Flint, “The species composition of the human intestinal microbiota differs between particle-associated and liquid phase communities,” Environmental Microbiology, vol. 10, no. 12, pp. 3275–3283, 2008. View at Publisher · View at Google Scholar · View at Scopus