Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2011, Article ID 852513, 10 pages
http://dx.doi.org/10.1155/2011/852513
Review Article

Dampening Host Sensing and Avoiding Recognition in Pseudomonas aeruginosa Pneumonia

1Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, 20132 Milano, Italy
2Dipartimento di Biologia Cellulare e dello Sviluppo, Sapienza-Università di Roma, 00185 Roma, Italy
3Istituto Pasteur-Fondazione Cenci Bolognetti, 00185 Roma, Italy

Received 15 December 2010; Accepted 9 May 2011

Academic Editor: Masao Kimoto

Copyright © 2011 Cristina Cigana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. K. Stover, X. Q. Pham, A. L. Erwin et al., “Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen,” Nature, vol. 406, no. 6799, pp. 959–964, 2000. View at Google Scholar
  2. R. T. Sadikot, T. S. Blackwell, J. W. Christman, and A. S. Prince, “Pathogen-host interactions in Pseudomonas aeruginosa pneumonia,” American Journal of Respiratory & Critical Care Medicine, vol. 171, no. 11, pp. 1209–1223, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Saiman and A. Prince, “Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells,” Journal of Clinical Investigation, vol. 92, no. 4, pp. 1875–1880, 1993. View at Google Scholar · View at Scopus
  4. G. B. Pier, M. Grout, T. S. Zaidi et al., “Role of mutant CFTR in hypersusceptibility of cystic fibrosis patients to lung infections,” Science, vol. 271, no. 5245, pp. 64–67, 1996. View at Google Scholar · View at Scopus
  5. G. B. Pier, M. Grout, and T. S. Zaidi, “Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 22, pp. 12088–12093, 1997. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Teichgräber, M. Ulrich, N. Endlich et al., “Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis,” Nature Medicine, vol. 14, no. 4, pp. 382–391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. T. Ganz, “Antimicrobial polypeptides in host defense of the respiratory tract,” Journal of Clinical Investigation, vol. 109, no. 6, pp. 693–697, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Berger, R. U. Sorensen, M. F. Tosi, D. G. Dearborn, and G. Döring, “Complement receptor expression on neutrophils at an inflammatory site, the Pseudomonas-infected lung in cystic fibrosis,” Journal of Clinical Investigation, vol. 84, no. 4, pp. 1302–1313, 1989. View at Google Scholar · View at Scopus
  9. V. Marcos, Z. Zhou, A. O. Yildirim et al., “CXCR2 mediates NADPH oxidase-independent neutrophil extracellular trap formation in cystic fibrosis airway inflammation,” Nature Medicine, vol. 16, no. 9, pp. 1018–1023, 2010. View at Google Scholar
  10. H. Matsui, B. R. Grubb, R. Tarran et al., “Evidence for periciliary liquid layer depletion, not abnormal ion composition, in the pathogenesis of cystic fibrosis airways disease,” Cell, vol. 95, no. 7, pp. 1005–1015, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Worlitzsch, R. Tarran, M. Ulrich et al., “Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients,” Journal of Clinical Investigation, vol. 109, no. 3, pp. 317–325, 2002. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Matsui, M. W. Verghese, M. Kesimer et al., “Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces,” Journal of Immunology, vol. 175, no. 2, pp. 1090–1099, 2005. View at Google Scholar · View at Scopus
  13. A. Livraghi and S. H. Randell, “Cystic fibrosis and other respiratory diseases of impaired mucus clearance,” Toxicologic Pathology, vol. 35, no. 1, pp. 116–129, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. H. B. Tang, E. Dimango, R. Bryan et al., “Contribution of specific Pseudomonas aeruginosa virulence factors to pathogenesis of pneumonia in a neonatal mouse model of infection,” Infection & Immunity, vol. 64, no. 1, pp. 37–43, 1996. View at Google Scholar · View at Scopus
  15. C. Madjdpour, B. Oertli, U. Ziegler, J. M. Bonvini, T. Pasch, and B. Beck-Schimmer, “Lipopolysaccharide induces functional ICAM-1 expression in rat alveolar epithelial cells in vitro,” American Journal of Physiology, vol. 278, no. 3, pp. L572–L579, 2000. View at Google Scholar · View at Scopus
  16. A. Filloux, M. Bally, G. Ball, M. Akrim, J. Tommassen, and A. Lazdunski, “Protein secretion in gram-negative bacteria: transport across the outer membrane involves common mechanisms in different bacteria,” EMBO Journal, vol. 9, no. 13, pp. 4323–4329, 1990. View at Google Scholar · View at Scopus
  17. T. L. Yahr, J. Goranson, and D. W. Frank, “Exoenzyme of S of Pseudomonas aeruginosa is secreted by a type III pathway,” Molecular Microbiology, vol. 22, no. 5, pp. 991–1003, 1996. View at Google Scholar · View at Scopus
  18. V. T. Lee, R. S. Smith, B. Tümmler, and S. Lory, “Activities of Pseudomonas aeruginosa effectors secreted by the type III secretion system in vitro and during infection,” Infection & Immunity, vol. 73, no. 3, pp. 1695–1705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Ball, É. Durand, A. Lazdunski, and A. Filloux, “A novel type II secretion system in Pseudomonas aeruginosa,” Molecular Microbiology, vol. 43, no. 2, pp. 475–485, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. E. E. Smith, D. G. Buckley, Z. Wu et al., “Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8487–8492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Bragonzi, M. Paroni, A. Nonis et al., “Pseudomonas aeruginosa microevolution during cystic fibrosis lung infection establishes clones with adapted virulence,” American Journal of Respiratory & Critical Care Medicine, vol. 180, no. 2, pp. 138–145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. I. Bianconi, A Milani, C. Cigana et al., “Positive signature-tagged mutagenesis in Pseudomonas aeruginosa: tracking patho-adaptive mutations promoting airways chronic infection,” PLoS Pathogens, vol. 7, no. 2, Article ID e1001270, 2011. View at Google Scholar
  23. D. Nguyen and P. K. Singh, “Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 22, pp. 8305–8306, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Hoiby, “Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. A survey,” Acta Pathologica et Microbiologica Scandinavica Supplement, no. 262, pp. 1–96, 1977. View at Google Scholar · View at Scopus
  25. S. Epelman, D. Stack, C. Bell et al., “Different domains of Pseudomonas aeruginosa exoenzyme S activate distinct TLRs,” Journal of Immunology, vol. 173, no. 3, pp. 2031–2040, 2004. View at Google Scholar · View at Scopus
  26. C. Erridge, A. Pridmore, A. Eley, J. Stewart, and I. R. Poxton, “Lipopolysaccharides of Bacteroides fragilis, Chlamydia trachomatis and Pseudomonas aeruginosa signal via toll-like receptor 2,” Journal of Medical Microbiology, vol. 53, no. 8, pp. 735–740, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Flo, L. Ryan, E. Latz et al., “Involvement of Toll-like receptor (TLR) 2 and TLR4 in cell activation by mannuronic acid polymers,” The Journal of Biological Chemistry, vol. 277, no. 38, pp. 35489–35495, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. E. Amiel, R. R. Lovewell, G. A. O'Toole, D. A. Hogan, and B. Berwin, “Pseudomonas aeruginosa evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression,” Infection & Immunity, vol. 78, no. 7, pp. 2937–2945, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. G. Lagoumintzis, M. Christofidou, G. Dimitracopoulos, and F. Paliogianni, “Pseudomonas aeruginosa slime glycolipoprotein is a potent stimulant of tumor necrosis factor alpha gene expression and activation of transcription activators nuclear factor kappa B and activator protein 1 in human monocytes,” Infection & Immunity, vol. 71, no. 8, pp. 4614–4622, 2003. View at Google Scholar
  30. C. Cigana, L. Curcurù, M. R. Leone et al., “Pseudomonas aeruginosa exploits lipid A and muropeptides modification as a strategy to lower innate immunity during cystic fibrosis lung infection,” PloS one, vol. 4, no. 12, p. e8439, 2009. View at Google Scholar · View at Scopus
  31. Z. Zhang, J. P. Louboutin, D. J. Weiner, J. B. Goldberg, and J. M. Wilson, “Human airway epithelial cells sense Pseudomonas aeruginosa infection via recognition of flagellin by toll-like receptor 5,” Infection & Immunity, vol. 73, no. 11, pp. 7151–7160, 2005. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Magnusson, R. Tobes, J. Sancho, and E. Pareja, “Cutting edge: natural DNA repetitive extragenic sequences from gram-negative pathogens strongly stimulate TLR9,” Journal of Immunology, vol. 179, no. 1, pp. 31–35, 2007. View at Google Scholar · View at Scopus
  33. H. Hemmi, O. Takeuchi, T. Kawai et al., “A toll-like receptor recognizes bacterial DNA,” Nature, vol. 408, no. 6813, pp. 740–745, 2000. View at Publisher · View at Google Scholar · View at Scopus
  34. L. Franchi, J. Stoolman, T. D. Kanneganti, A. Verma, R. Ramphal, and G. Núñez, “Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation,” European Journal of Immunology, vol. 37, no. 11, pp. 3030–3039, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. T. H. Schroeder, M. M. Lee, P. W. Yacono et al., “CFTR is a pattern recognition molecule that extracts Pseudomonas aeruginosa LPS from the outer membrane into epithelial cells and activates NF-kappa B translocation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 10, pp. 6907–6912, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. C. A. Janeway Jr., “Approaching the asymptote? Evolution and revolution in immunology,” Cold Spring Harbor Symposia on Quantitative Biology, vol. 54, no. 1, pp. 1–13, 1989. View at Google Scholar · View at Scopus
  37. S. Akira and K. Takeda, “Toll-like receptor signalling,” Nature Reviews Immunology, vol. 4, no. 7, pp. 499–511, 2004. View at Google Scholar · View at Scopus
  38. S. Akira, S. Uematsu, and O. Takeuchi, “Pathogen recognition and innate immunity,” Cell, vol. 124, no. 4, pp. 783–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. N. Inohara, T. Koseki, L. Del Peso et al., “Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB,” The Journal of Biological Chemistry, vol. 274, no. 21, pp. 14560–14567, 1999. View at Publisher · View at Google Scholar · View at Scopus
  40. Y. Ogura, N. Inohara, A. Benito, F. F. Chen, S. Yamaoka, and G. Nunez, “Nod2, a Nod1/Apaf-1 family member that is restricted to monocytes and activates NF-kappaB,” The Journal of Biological Chemistry, vol. 276, no. 7, pp. 4812–4818, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. S. E. Girardin, I. G. Boneca, L. A. Carneiro et al., “Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan,” Science, vol. 300, no. 5625, pp. 1584–1587, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. N. Inohara, Y. Ogura, A. Fontalba et al., “Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for crohn's disease,” The Journal of Biological Chemistry, vol. 278, no. 8, pp. 5509–5512, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Inohara, M. Chamaillard, C. McDonald, and G. Nunez, “NOD-LRR proteins: role in host-microbial interactions and inflammatory disease,” Annual Review of Biochemistry, vol. 74, pp. 355–383, 2005. View at Publisher · View at Google Scholar · View at Scopus
  44. J. H. Fritz, R. L. Ferrero, D. J. Philpott, and S. E. Girardin, “Nod-like proteins in immunity, inflammation and disease,” Nature Immunology, vol. 7, no. 12, pp. 1250–1257, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. B. T. Cookson and M. A. Brennan, “Pro-inflammatory programmed cell death,” Trends in Microbiology, vol. 9, no. 3, pp. 113–114, 2001. View at Google Scholar · View at Scopus
  46. J. B. Lyczak, C. L. Cannon, and G. B. Pier, “Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist,” Microbes and Infection, vol. 2, no. 9, pp. 1051–1060, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Alexander and E. T. Rietschel, “Bacterial lipopolysaccharides and innate immunity,” Journal of Endotoxin Research, vol. 7, no. 3, pp. 167–202, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Lien, T. K. Means, H. Heine et al., “Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide,” Journal of Clinical Investigation, vol. 105, no. 4, pp. 497–504, 2000. View at Google Scholar · View at Scopus
  49. R. Kitchens, “Role of CD14 in cellular recognition of bacterial lipopolysaccharides,” Chemical Immunology, vol. 74, pp. 61–82, 1999. View at Google Scholar · View at Scopus
  50. R. K. Ernst, E. C. Yi, L. Guo et al., “Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa,” Science, vol. 286, no. 5444, pp. 1561–1565, 1999. View at Publisher · View at Google Scholar · View at Scopus
  51. R. Ernst, A. M. Hajjar, J. H. Tsai, S. M. Moskowitz, C. B. Wilson, and S. I. Miller, “Pseudomonas aeruginosa lipid A diversity and its recognition by Toll-like receptor 4,” Journal of Endotoxin Research, vol. 9, no. 6, pp. 395–400, 2003. View at Publisher · View at Google Scholar · View at Scopus
  52. A. M. Firoved, W. Ornatowski, and V. Deretic, “Microarray analysis reveals induction of lipoprotein genes in mucoid Pseudomonas aeruginosa: implications for inflammation in cystic fibrosis,” Infection & Immunity, vol. 72, no. 9, pp. 5012–5018, 2004. View at Publisher · View at Google Scholar · View at Scopus
  53. R. Adamo, S. Sokol, G. Soong, M. I. Gomez, and A. Prince, “Pseudomonas aeruginosa flagella activate airway epithelial cells through asialoGM1 and toll-like receptor 2 as well as toll-like receptor 5,” American Journal of Respiratory Cell & Molecular Biology, vol. 30, no. 5, pp. 627–634, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Xaplanteri, G. Lagoumintzis, G. Dimitracopoulos, and F. Paliogianni, “Synergistic regulation of Pseudomonas aeruginosa-induced cytokine production in human monocytes by mannose receptor and TLR2,” European Journal of Immunology, vol. 39, no. 3, pp. 730–740, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. X. Huang, R. P. Barrett, S. A. McClellan, and L. D. Hazlett, “Silencing toll-like receptor-9 in Pseudomonas aeruginosa keratitis,” Investigative Ophthalmology & Visual Science, vol. 46, no. 11, pp. 4209–4216, 2005. View at Publisher · View at Google Scholar · View at Scopus
  56. X. Sun, H. Sui, J. T. Fisher et al., “Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis,” The Journal of Clinical Investigation, vol. 120, no. 9, pp. 3149–3160, 2010. View at Google Scholar
  57. M. Schirm, S. K. Arora, A. Verma et al., “Structural and genetic characterization of glycosylation of type a flagellin in Pseudomonas aeruginosa,” Journal of Bacteriology, vol. 186, no. 9, pp. 2523–2531, 2004. View at Publisher · View at Google Scholar · View at Scopus
  58. M. A. Donnelly and T. S. Steiner, “Two nonadjacent regions in enteroaggregative Escherichia coli flagellin are required for activation of toll-like receptor 5,” The Journal of Biological Chemistry, vol. 277, no. 43, pp. 40456–40461, 2002. View at Publisher · View at Google Scholar · View at Scopus
  59. K. G. Murthy, A. Deb, S. Goonesekera, C. Szabó, and A. L. Salzman, “Identification of conserved domains in Salmonella muenchen flagellin that are essential for Its ability to activate TLR5 and to induce an inflammatory response in vitro,” The Journal of Biological Chemistry, vol. 279, no. 7, pp. 5667–5675, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Verma, S. K. Arora, S. K. Kuravi, and R. Ramphal, “Roles of specific amino acids in the N terminus of Pseudomonas aeruginosa flagellin and of flagellin glycosylation in the innate immune response,” Infection & Immunity, vol. 73, no. 12, pp. 8237–8246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Eaves-Pyles, K. Murthy, and L. Liaudet, “Flagellin, a novel mediator of Salmonella-induced epithelial activation and systemic inflammation: I kappa B alpha degradation, induction of nitric oxide synthase, induction of proinflammatory mediators, and cardiovascular dysfunction,” The Journal of Immunology, vol. 166, no. 2, pp. 1248–1260, 2001. View at Google Scholar
  62. V. Feuillet, S. Medjane, I. Mondor et al., “Involvement of toll-like receptor 5 in the recognition of flagellated bacteria,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 33, pp. 12487–12492, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. M. R. Power, Y. Peng, E. Maydanski, J. S. Marshall, and T. J. Lin, “The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice,” The Journal of Biological Chemistry, vol. 279, no. 47, pp. 49315–49322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Ramphal, V. Balloy, M. Huerre, M. Si-Tahar, and M. Chignard, “TLRs 2 and 4 are not involved in hypersusceptibility to acute Pseudomonas aeruginosa lung infections,” Journal of Immunology, vol. 175, no. 6, pp. 3927–3934, 2005. View at Google Scholar · View at Scopus
  65. S. J. Skerrett, H. D. Liggitt, A. M. Hajjar, and C. B. Wilson, “Cutting edge: myeloid differentiation factor 88 is essential for pulmonary host defense against Pseudomonas aeruginosa but not Staphylococcus aureus,” Journal of Immunology, vol. 172, no. 6, pp. 3377–3381, 2004. View at Google Scholar · View at Scopus
  66. L. H. Travassos, L. A. Carneiro, S. E. Girardin et al., “Nod1 participates in the innate immune response to Pseudomonas aeruginosa,” The Journal of Biological Chemistry, vol. 280, no. 44, pp. 36714–36718, 2005. View at Publisher · View at Google Scholar · View at Scopus
  67. L. Franchi, A. Amer, M. Body-Malapel et al., “Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in Salmonella-infected macrophages,” Nature Immunology, vol. 7, no. 6, pp. 576–582, 2006. View at Publisher · View at Google Scholar · View at Scopus
  68. E. A. Miao, E. Andersen-Nissen, S. E. Warren, and A. Aderem, “TLR5 and Ipaf: dual sensors of bacterial flagellin in the innate immune system,” Seminars in Immunopathology, vol. 29, no. 3, pp. 275–288, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. E. A. Miao, R. K. Ernst, M. Dors, D. P. Mao, and A. Aderem, “Pseudomonas aeruginosa activates caspase 1 through Ipaf,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 7, pp. 2562–2567, 2008. View at Publisher · View at Google Scholar · View at Scopus
  70. F. S. Sutterwala, L. A. Mijares, L. Li, Y. Ogura, B. I. Kazmierczak, and R. A. Flavell, “Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome,” Journal of Experimental Medicine, vol. 204, no. 13, pp. 3235–3245, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. E. A. Miao, D. P. Mao, N. Yudkovsky et al., “Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 7, pp. 3076–3080, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. E. Mahenthiralingam, M. E. Campbell, and D. P. Speert, “Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis,” Infection and Immunity, vol. 62, no. 2, pp. 596–605, 1994. View at Google Scholar · View at Scopus
  73. D. W. Martin, M. J. Schurr, M. H. Mudd, J. R. W. Govan, B. W. Holloway, and V. Deretic, “Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients,” Proceedings of the National Academy of Sciences of the United States of America, vol. 90, no. 18, pp. 8377–8381, 1993. View at Google Scholar · View at Scopus
  74. A. Bragonzi, L. Wiehlmann, J. Klockgether et al., “Sequence diversity of the mucABD locus in Pseudomonas aeruginosa isolates from patients with cystic fibrosis,” Microbiology, vol. 152, no. 11, pp. 3261–3269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  75. D. A. D'Argenio, M. Wu, L. R. Hoffman et al., “Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients,” Molecular Microbiology, vol. 64, no. 2, pp. 512–533, 2007. View at Publisher · View at Google Scholar · View at Scopus
  76. L. Hoffman, H. D. Kulasekara, J. Emerson et al., “Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression,” Journal of Cystic Fibrosis, vol. 8, no. 1, pp. 66–70, 2009. View at Publisher · View at Google Scholar · View at Scopus
  77. J. L. Burns, R. L. Gibson, S. McNamara et al., “Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis,” Journal of Infectious Diseases, vol. 183, no. 3, pp. 444–452, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. O. Ciofu, B. Riis, T. Pressler, H. E. Poulsen, and N. Høiby, “Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation,” Antimicrobial Agents & Chemotherapy, vol. 49, no. 6, pp. 2276–2282, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. K. Mathee, O. Ciofu, C. Sternberg et al., “Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung,” Microbiology, vol. 145, no. 6, pp. 1349–1357, 1999. View at Google Scholar · View at Scopus
  80. A. Bragonzi, D. Worlitzsch, G. B. Pier et al., “Nonmucoid Pseudomonas aeruginosa expresses alginate in the lungs of patients with cystic fibrosis and in a mouse model,” Journal of Infectious Diseases, vol. 192, no. 3, pp. 410–419, 2005. View at Publisher · View at Google Scholar · View at Scopus
  81. E. V. Sokurenko, D. L. Hasty, and D. E. Dykhuizen, “Pathoadaptive mutations: gene loss and variation in bacterial pathogens,” Trends in Microbiology, vol. 7, no. 5, pp. 191–195, 1999. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Jain, D. Ramirez, R. Seshadri et al., “Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis,” Journal of Clinical Microbiology, vol. 42, no. 11, pp. 5229–5237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. A. Oliver, R. Cantón, P. Campo, F. Baquero, and J. Blàzquez, “High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection,” Science, vol. 288, no. 5469, pp. 1251–1253, 2000. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Young, T. Hussell, and G. Dougan, “Chronic bacterial infections: living with unwanted guests,” Nature Immunology, vol. 3, no. 11, pp. 1026–1032, 2002. View at Publisher · View at Google Scholar · View at Scopus
  85. E. V. Sokurenko, V. Chesnokova, D. E. Dykhuizen et al., “Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 15, pp. 8922–8926, 1998. View at Publisher · View at Google Scholar · View at Scopus
  86. E. R. Moxon and P. A. Murphy, “Haemophilus influenzae bacteremia and meningitis resulting from survival of a single organism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 75, no. 3, pp. 1534–1536, 1978. View at Google Scholar · View at Scopus
  87. N. S. Akopyants, K. A. Eaton, and D. E. Berg, “Adaptive mutation and cocolonization during Helicobacter pylori infection of gnotobiotic piglets,” Infection & Immunity, vol. 63, no. 1, pp. 116–121, 1995. View at Google Scholar · View at Scopus
  88. M. A. Luzar, M. J. Thomassen, and T. C. Montie, “Flagella and motility alterations in Pseudomonas aeruginosa strains from patients with cystic fibrosis: relationship to patient clinical condition,” Infection & Immunity, vol. 50, no. 2, pp. 577–582, 1985. View at Google Scholar · View at Scopus
  89. R. K. Ernst, S. M. Moskowitz, J. C. Emerson et al., “Unique lipid A modifications in Pseudomonas aeruginosa isolated from the airways of patients with cystic fibrosis,” Journal of Infectious Diseases, vol. 196, no. 7, pp. 1088–1092, 2007. View at Publisher · View at Google Scholar · View at Scopus
  90. A. M. Hajjar, R. K. Ernst, J. H. Tsai, C. B. Wilson, and S. I. Miller, “Human toll-like receptor 4 recognizes host-specific LPS modifications,” Nature Immunology, vol. 3, no. 4, pp. 354–359, 2002. View at Publisher · View at Google Scholar · View at Scopus
  91. J. A. Simpson, S. E. Smith, and R. T. Dean, “Alginate inhibition of the uptake of Pseudomonas aeruginosa by macrophages,” Journal of General Microbiology, vol. 134, no. 1, pp. 29–36, 1988. View at Google Scholar · View at Scopus
  92. J. A. Simpson, S. E. Smith, and R. T. Dean, “Alginate may accumulate in cystic fibrosis lung because the enzymatic and free radical capacities of phagocytic cells are inadequate for its degradation,” Biochemistry & Molecular Biology International, vol. 30, no. 6, pp. 1021–1034, 1993. View at Google Scholar · View at Scopus
  93. N. Høiby, H. Krogh Johansen, C. Moser, Z. Song, O. Ciofu, and A. Kharazmi, “Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth,” Microbes & Infection, vol. 3, no. 1, pp. 23–35, 2001. View at Publisher · View at Google Scholar · View at Scopus
  94. L. M. Cobb, J. C. Mychaleckyj, D. J. Wozniak, and Y. S. López-Boado, “Pseudomonas aeruginosa flagellin and alginate elicit very distinct gene expression patterns in airway epithelial cells: implications for cystic fibrosis disease,” Journal of Immunology, vol. 173, no. 9, pp. 5659–5670, 2004. View at Google Scholar · View at Scopus
  95. J. R. Govan, J. A. Fyfe, and N. R. Baker, “Heterogeneity and reduction in pulmonary clearance of mucoid Pseudomonas aeruginosa,” Reviews of Infectious Diseases, vol. 5, pp. S874–S879, 1983. View at Google Scholar · View at Scopus
  96. J. C. Boucher, H. Yu, M. H. Mudd, and V. Deretic, “Mucoid Pseudomonas aeruginosa in cystic fibrosis: characterization of muc mutations in clinical isolates and analysis of clearance in a mouse model of respiratory infection,” Infection & Immunity, vol. 65, no. 9, pp. 3838–3846, 1997. View at Google Scholar · View at Scopus
  97. M. Jain, D. Ramirez, R. Seshadri et al., “Type III secretion phenotypes of Pseudomonas aeruginosa strains change during infection of individuals with cystic fibrosis,” Journal of Clinical Microbiology, vol. 42, no. 11, pp. 5229–5237, 2004. View at Publisher · View at Google Scholar · View at Scopus
  98. C. Fung, S. Naughton, L. Turnbull et al., “Gene expression of Pseudomonas aeruginosa in a mucin-containing synthetic growth medium mimicking cystic fibrosis lung sputum,” Journal of Medical Microbiology, vol. 59, no. 9, pp. 1089–1100, 2010. View at Google Scholar
  99. A. K. Jones, N. B. Fulcher, and G. J. Balzer, “Activation of the Pseudomonas aeruginosa AlgU regulon through mucA mutation inhibits cyclic AMP/Vfr signaling,” The Journal of Bacteriology, vol. 192, no. 21, pp. 5709–5717, 2010. View at Google Scholar