Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 105109, 15 pages
http://dx.doi.org/10.1155/2012/105109
Review Article

Proteomics Shows New Faces for the Old Penicillin Producer Penicillium chrysogenum

Proteomics Service of INBIOTEC, Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Avenida. Real, no. 1, 24006 León, Spain

Received 2 June 2011; Revised 30 September 2011; Accepted 14 October 2011

Academic Editor: Tanya Parish

Copyright © 2012 Carlos Barreiro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Guarro, J. Gené, and A. M. Stchigel, “Developments in fungal taxonomy,” Clinical Microbiology Reviews, vol. 12, no. 3, pp. 454–500, 1999. View at Google Scholar · View at Scopus
  2. D. L. Hawksworth, “The fungal dimension of biodiversity: magnitude, significance, and conservation,” Mycological Research, vol. 95, pp. 641–655, 1991. View at Publisher · View at Google Scholar
  3. D. L. Hawksworth and A. Y. Rossman, “Where are all the undescribed fungi?” Phytopathology, vol. 87, no. 9, pp. 888–891, 1997. View at Publisher · View at Google Scholar · View at Scopus
  4. D. L. Hawksworth, “The magnitude of fungal diversity: the 1.5 million species estimate revisited,” Mycological Research, vol. 105, no. 12, pp. 1422–1432, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. H. E. O'Brien, J. L. Parrent, J. A. Jackson, J. M. Moncalvo, and R. Vilgalys, “Fungal community analysis by large-scale sequencing of environmental samples,” Applied and Environmental Microbiology, vol. 71, no. 9, pp. 5544–5550, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. D. S. Hibbett, A. Ohman, and P. M. Kirk, “Fungal ecology catches fire,” New Phytologist, vol. 184, no. 2, pp. 279–282, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. M. L. Berbee and J. W. Taylor, “Ascomycete relationships: dating the origin of asexual lineages with 18S ribosomal RNA gene sequence data,” in The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics, D. R. Reynolds and J. W. Taylor, Eds., pp. 67–78, CAB International, Wallingford, UK, 1993. View at Google Scholar
  8. K. Voigt and P. M. Kirk, “Recent developments in the taxonomic affiliation and phylogenetic positioning of fungi: impact in applied microbiology and environmental biotechnology,” Applied Microbiology and Biotechnology, vol. 90, no. 1, pp. 41–57, 2011. View at Publisher · View at Google Scholar
  9. D. S. Hibbett, M. Binder, J. F. Bischoff et al., “A higher-level phylogenetic classification of the Fungi,” Mycological Research, vol. 111, no. 5, pp. 509–547, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Schüßler, D. Schwarzott, and C. Walker, “A new fungal phylum, the Glomeromycota: phylogeny and evolution,” Mycological Research, vol. 105, no. 12, pp. 1413–1421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  11. J. M. Palmer and N. P. Keller, “Secondary metabolism in fungi: does chromosomal location matter?” Current Opinion in Microbiology, vol. 13, no. 4, pp. 431–436, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Olano, F. Lombo, C. Mendez, and J. A. Salas, “Improving production of bioactive secondary metabolites in actinomycetes by metabolic engineering,” Metabolic Engineering, vol. 10, no. 5, pp. 281–292, 2008. View at Publisher · View at Google Scholar
  13. A. Fleming, “On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae,” British Journal of Experimental Pathology, vol. 10, pp. 226–236, 1929. View at Google Scholar
  14. P. W. Clutterbuck, R. Lovell, and H. Raistrick, “Studies in the biochemistry of micro-organisms. The formation from glucose by members of the Penicillium chrysogenum series of a pigment, an alkali-soluble protein and penicillin—the antibacterial substance of Fleming,” Biochemical Journal, vol. 26, no. 6, pp. 1907–1918, 1932. View at Google Scholar
  15. H. W. Florey, E. B. Chain, N. G. Heatley et al., Antibiotics, vol. 2, Oxford University Press, London, UK, 1949.
  16. K. F. Kong, L. Schneper, and K. Mathee, “Beta-lactam antibiotics: from antibiosis to resistance and bacteriology,” Acta Pathologica, Microbiologica et Immunologica Scandinavica, vol. 118, no. 1, pp. 1–36, 2010. View at Google Scholar
  17. A. A. Brakhage, M. Thön, P. Spröte et al., “Aspects on evolution of fungal β-lactam biosynthesis gene clusters and recruitment of trans-acting factors,” Phytochemistry, vol. 70, no. 15-16, pp. 1801–1811, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. J. F. Martín, R. V. Ullán, and C. García-Estrada, “Regulation and compartmentalization of beta-lactam biosynthesis,” Microbial Biotechnology, vol. 3, pp. 285–299, 2010. View at Publisher · View at Google Scholar
  19. C. García-Estrada, F. Fierro, and J. F. Martín, “Evolution of fungal β-lactam biosynthesis gene clusters,” in Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, A. Mendez-Vilas, Ed., vol. 1, pp. 577–588, Formatex Research Center, Badajoz, Spain, 2010. View at Google Scholar
  20. K. Kato, “Occurrence of penicillin-nucleus in culture broths,” The Journal of Antibiotics, vol. 6, no. 3, pp. 130–136, 1953. View at Google Scholar · View at Scopus
  21. A. L. Demain, “The mechanism of penicillin biosynthesis,” Advances in Applied Microbiology, vol. 1, no. C, pp. 23–47, 1959. View at Publisher · View at Google Scholar · View at Scopus
  22. F. R. Batchelor, F. P. Doyle, J. H. C. Nayler, and G. N. Rolinson, “Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations,” Nature, vol. 183, no. 4656, pp. 257–258, 1959. View at Publisher · View at Google Scholar · View at Scopus
  23. A. L. Demain and R. P. Blander, “The β-lactam antibiotics: past, present, and future,” Antonie van Leeuwenhoek, vol. 75, no. 1-2, pp. 5–19, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. C. García-Estrada and J. F. Martín, “Penicillins and cephalosporins,” in Comprehensive Biotechnology, M. Moo-Young, M. Butler, C. Webb et al., Eds., Elsevier, Amsterdam, The Netherlands, 2nd edition, 2011. View at Google Scholar
  25. K. B. Raper, D. F. Alexander, and R. D. Coghill, “Penicillin: II. Natural variation and penicillin production in Penicillium notatum and allied species,” The Journal of Bacteriology, vol. 48, no. 6, pp. 639–659, 1944. View at Google Scholar
  26. K. B. Raper, “The development of improved penicillinproducing molds,” Annals of the New York Academy of Sciences, vol. 48, pp. 41–56, 1946. View at Publisher · View at Google Scholar
  27. M. P. Backus, J. F. Stauffer, and M. J. Johnson, “Penicillin yields from new mold strains,” Journal of the American Chemical Society, vol. 68, no. 1, pp. 152–153, 1946. View at Google Scholar · View at Scopus
  28. M. P. Backus and J. F. Stauffer, “The production and selection of a family of strains in Penicillium chrysogenum,” Mycologia, vol. 47, pp. 429–463, 1955. View at Publisher · View at Google Scholar
  29. R. F. Anderson, L. M. Whitmore, W. E. Brown et al., “Production of penicillin by some pigmentless mutants of the mold, Penicillium chrysogenum Q176,” Industrial & Engineering Chemistry, vol. 45, pp. 768–773, 1953. View at Publisher · View at Google Scholar
  30. R. P. Elander, “Strain improvement and preservation of beta-lactam producing microorganisms,” in Antibiotics Containing the Beta-Lactam Structure I, A. L. Demain and N. Solomon, Eds., pp. 97–146, Springer, New York, NY, USA, 1983. View at Google Scholar
  31. R. P. Elander, “University of Wisconsin contributions to the early development of penicillin and cephalosporin antibiotics,” SIM News, vol. 52, pp. 270–278, 2002. View at Google Scholar
  32. J. Lein, “The Panlabs Penicillium strain improvement program,” in Overproduction of Microbial Metabolites, Z. Vanek and Z. Hostalek, Eds., pp. 105–140, Butterworths, Stoneham, Mass, USA, 1986. View at Google Scholar
  33. R. J. Gouka, W. van Hartingsveldt, R. A. L. Bovenberg, C. A. M. J. J. van den Hondel, and R. F. M. van Gorcom, “Cloning of the nitrate-nitrite reductase gene cluster of Penicillium chrysogenum and use of the niaD gene as a homologous selection marker,” Journal of Biotechnology, vol. 20, no. 2, pp. 189–199, 1991. View at Publisher · View at Google Scholar · View at Scopus
  34. F. Fierro, J. L. Barredo, B. Díez, S. Gutierrez, F. J. Fernández, and J. F. Martín, “The penicillin gene cluster is amplified in tandem repeats linked by conserved hexanucleotide sequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 13, pp. 6200–6204, 1995. View at Publisher · View at Google Scholar · View at Scopus
  35. M. A. Peñalva, R. T. Rowlands, and G. Turner, “The optimization of penicillin biosynthesis in fungi,” Trends in Biotechnology, vol. 16, no. 11, pp. 483–489, 1998. View at Publisher · View at Google Scholar · View at Scopus
  36. R. W. Newbert, B. Barton, P. Greaves, J. Harper, and G. Turner, “Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster,” Journal of Industrial Microbiology and Biotechnology, vol. 19, no. 1, pp. 18–27, 1997. View at Publisher · View at Google Scholar · View at Scopus
  37. M. A. van den Berg, I. Westerlaken, C. Leeflang, R. Kerkman, and R. A. L. Bovenberg, “Functional characterization of the penicillin biosynthetic gene cluster of Penicillium chrysogenum Wisconsin54-1255,” Fungal Genetics and Biology, vol. 44, no. 9, pp. 830–844, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. F. Fierro, C. García-Estrada, N. I. Castillo, R. Rodriguez, T. Velasco-Conde, and J. F. Martín, “Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum,” Fungal Genetics and Biology, vol. 43, pp. 618–629, 2006. View at Publisher · View at Google Scholar
  39. C. García-Estrada, I. Vaca, M. Lamas-Maceiras, and J. F. Martín, “In vivo transport of the intermediates of the penicillin biosynthetic pathway in tailored strains of Penicillium chrysogenum,” Applied Microbiology and Biotechnology, vol. 76, pp. 169–182, 2007. View at Publisher · View at Google Scholar
  40. K. Kosalková, C. García-Estrada, and R. V. Ullán, “The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum,” Biochimie, vol. 91, pp. 214–225, 2009. View at Publisher · View at Google Scholar
  41. B. Hoff, J. Kamerewerd, C. Sigl et al., “Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum,” Eukaryotic Cell, vol. 9, no. 8, pp. 1236–1250, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. C. Sigl, H. Haas, T. Specht, K. Pfaller, H. Kurnsteiner, and I. Zadra, “Among developmental regulators, StuA but not BrlA is essential for penicillin V production in Penicillium chrysogenum,” Applied and Environmental Microbiology, vol. 77, pp. 972–982, 2011. View at Publisher · View at Google Scholar
  43. C. García-Estrada, R. V. Ullán, T. Velasco-Conde et al., “Post-translational enzyme modification by the phosphopantetheinyl transferase is required for lysine and penicillin biosynthesis but not for roquefortine or fatty acid formation in Penicillium chrysogenum,” Biochemical Journal, vol. 415, pp. 317–324, 2008. View at Publisher · View at Google Scholar
  44. M. Lamas-Maceiras, I. Vaca, E. Rodríguez, J. Casqueiro, and J. F. Martín, “Amplification and disruption of the phenylacetyl-CoA ligase gene of Penicillium chrysogenum encoding an aryl-capping enzyme that supplies phenylacetic acid to the isopenicillin N-acyltransferase,” Biochemical Journal, vol. 395, no. 1, pp. 147–155, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. D. J. Smith, J. H. Bull, J. Edwards, and G. Turner, “Amplification of the isopenicillin N synthetase gene in a strain of Penicillium chrysogenum producing high levels of penicillin,” Molecular and General Genetics, vol. 216, no. 2-3, pp. 492–497, 1989. View at Publisher · View at Google Scholar · View at Scopus
  46. J. G. Nijland, B. Ebbendorf, M. Woszczynska, R. Boer, R. A. L. Bovenberg, and A. J. M. Driessen, “Nonlinear biosynthetic gene cluster dose effect on penicillin production by Penicillium chrysogenum,” Applied and Environmental Microbiology, vol. 76, no. 21, pp. 7109–7115, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Smidák, M. Jopcík, M. Kralovicová et al., “Core promoters of the penicillin biosynthesis genes and quantitative RT-PCR analysis of these genes in high and low production strain of Penicillium chrysogenum,” Folia Microbiologica, vol. 55, pp. 126–132, 2010. View at Publisher · View at Google Scholar
  48. J. M. Fernández-Cañón and M. A. Peñalva, “A fungal model for inborn errors in human phenylalanine metabolism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, pp. 9132–9136, 1995. View at Publisher · View at Google Scholar
  49. J. M. Mingot, M. A. Peñalva, and J. M. Fernández-Cañón, “Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction,” Journal of Biological Chemistry, vol. 274, no. 21, pp. 14545–14550, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Arias-Barrau, E. R. Olivera, J. M. Luengo et al., “The homogentisate pathway: a central catabolic pathway involved in the degradation of L-phenylalanine, L-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida,” The Journal of Bacteriology, vol. 186, pp. 5062–5077, 2004. View at Publisher · View at Google Scholar
  51. F. Ferrer-Sevillano and J. M. Fernández-Cañón, “Novel phacB-encoded cytochrome P450 monooxygenase from Aspergillus nidulans with 3-hydroxyphenylacetate 6-hydroxylase and 3,4-dihydroxyphenylacetate 6-hydroxylase activities,” Eukaryotic Cell, vol. 6, no. 3, pp. 514–520, 2007. View at Publisher · View at Google Scholar · View at Scopus
  52. M. Rodríguez-Sáiz, J. L. Barredo, M. A. Moreno, J. M. Fernández-Cañón, M. A. Peñalva, and B. Díez, “Reduced function of a phenylacetate-oxidizing cytochrome p450 caused strong genetic improvement in early phylogeny of penicillin-producing strains,” The Journal of Bacteriology, vol. 183, pp. 5465–5471, 2001. View at Publisher · View at Google Scholar
  53. M. Rodríguez-Sáiz, B. Díez, and J. L. Barredo, “Why did the Fleming strain fail in penicillin industry?” Fungal Genetics and Biology, vol. 42, no. 5, pp. 464–470, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. J. A. K. W. Kiel, I. J. van der Klei, M. A. van den Berg, R. A. L. Bovenberg, and M. Veenhuis, “Overproduction of a single protein, Pc-Pex11p, results in 2-fold enhanced penicillin production by Penicillium chrysogenum,” Fungal Genetics and Biology, vol. 42, no. 2, pp. 154–164, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. W. H. Müller, T. P. van der Krift, A. J. J. Krouwer et al., “Localization of the pathway of the penicillin biosynthesis in Penicillium chrysogenum,” The EMBO Journal, vol. 10, no. 2, pp. 489–495, 1991. View at Google Scholar · View at Scopus
  56. L. Gidijala, I. J. van der Klei, M. Veenhuis, and J. A. K. W. Kiel, “Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene,” FEMS Yeast Research, vol. 7, no. 7, pp. 1160–1167, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. M. A. van den Berg, R. Albang, K. Albermann et al., “Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum,” Nature Biotechnology, vol. 26, pp. 1161–1168, 2008. View at Publisher · View at Google Scholar
  58. W. H. Müller, R. A. L. Bovenberg, M. H. Groothuis et al., “Involvement of microbodies in penicillin biosynthesis,” Biochimica et Biophysica Acta, vol. 1116, no. 2, pp. 210–213, 1992. View at Publisher · View at Google Scholar · View at Scopus
  59. W. H. Meijer, L. Gidijala, S. Fekken et al., “Peroxisomes are required for efficient penicillin biosynthesis in Penicillium chrysogenum,” Applied and Environmental Microbiology, vol. 76, no. 17, pp. 5702–5709, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. M. A. van den Berg, “Functional characterisation of penicillin production strains,” Fungal Biology Reviews, vol. 24, no. 1-2, pp. 73–78, 2010. View at Publisher · View at Google Scholar · View at Scopus
  61. D. M. Harris, Z. A. van der Krogt, P. Klaassen et al., “Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production,” BMC Genomics, vol. 10, article 75, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. D. Lim, P. Hains, B. Walsh, P. Bergquist, and H. Nevalainen, “Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach,” Proteomics, vol. 1, no. 7, pp. 899–910, 2001. View at Publisher · View at Google Scholar · View at Scopus
  63. F. J. Fernández-Acero, I. Jorge, E. Calvo et al., “Two-dimensional electrophoresis protein profile of the phytopathogenic fungus Botrytis cinerea,” Proteomics, vol. 6, supplement 1, pp. S88–S96, 2006. View at Publisher · View at Google Scholar
  64. J. V. F. Coumans, P. D. J. Moens, A. Poljak, S. Al-Jaaidi, L. Pereg, and M. J. Raftery, “Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola,” Proteomics, vol. 10, no. 8, pp. 1573–1591, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. V. Yıldırım, S. Ozcan, D. Becher, K. Buttner, M. Hecker, and G. Ozcengiz, “Characterization of proteome alterations in Phanerochaete chrysosporium in response to lead exposure,” Proteome Science, vol. 9, pp. 1–12, 2011. View at Publisher · View at Google Scholar
  66. O. Kniemeyer, F. Lessing, O. Scheibner, C. Hertweck, and A. A. Brakhage, “Optimisation of a 2-D gel electrophoresis protocol for the human-pathogenic fungus Aspergillus fumigatus,” Current Genetics, vol. 49, no. 3, pp. 178–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Shimizu, T. Fujii, S. Masuo, K. Fujita, and N. Takaya, “Proteomic analysis of Aspergillus nidulans cultured under hypoxic conditions,” Proteomics, vol. 9, no. 1, pp. 7–19, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. X. Lu, J. Sun, M. Nimtz, J. Wissing, A. P. Zeng, and U. Rinas, “The intra- and extracellular proteome of Aspergillus niger growing on defined medium with xylose or maltose as carbon substrate,” Microbial Cell Factories, vol. 9, article 23, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. M. S. Jami, C. Barreiro, C. García-Estrada, and J. F. Martín, “Proteome analysis of the penicillin producer Penicillium chrysogenum: characterization of protein changes during the industrial strain improvement,” Molecular and Cellular Proteomics, vol. 9, no. 6, pp. 1182–1198, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. M. Vödisch, K. Scherlach, R. Winkler et al., “Analysis of the Aspergillus fumigatus proteome reveals metabolic changes and the activation of the pseurotin a biosynthesis gene cluster in response to hypoxia,” Journal of Proteome Research, vol. 10, no. 5, pp. 2508–2524, 2011. View at Publisher · View at Google Scholar
  71. R. Cobos, C. Barreiro, R. M. Mateos, and J. R. Coque, “Cytoplasmic- and extracellular-proteome analysis of Diplodia seriata: a phytopathogenic fungus involved in grapevine decline,” Proteome Science, vol. 8, article 46, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. Y. T. Oh, C. S. Ahn, J. G. Kim, H. S. Ro, C. W. Lee, and J. W. Kim, “Proteomic analysis of early phase of conidia germination in Aspergillus nidulans,” Fungal Genetics and Biology, vol. 47, no. 3, pp. 246–253, 2010. View at Publisher · View at Google Scholar · View at Scopus
  73. V. Bhadauria, W. S. Zhao, L. X. Wang et al., “Advances in fungal proteomics,” Microbiological Research, vol. 162, no. 3, pp. 193–200, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. C. Barreiro, E. Gonzalez-Lavado, S. Brand, A. Tauch, and J. F. Martín, “Heat shock proteome analysis of wild-type Corynebacterium glutamicum ATCC 13032 and a spontaneous mutant lacking GroEL1, a dispensable chaperone,” The Journal of Bacteriology, vol. 187, no. 3, pp. 884–889, 2005. View at Publisher · View at Google Scholar
  75. D. W. Kim, K. Chater, K. J. Lee, and A. Hesketh, “Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new target for the pleiotropic regulator AdpA in Streptomyces coelicolor,” The Journal of Bacteriology, vol. 187, no. 9, pp. 2957–2966, 2005. View at Publisher · View at Google Scholar
  76. G. Candiano, M. Bruschi, L. Musante et al., “Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis,” Electrophoresis, vol. 25, no. 9, pp. 1327–1333, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Publisher · View at Google Scholar · View at Scopus
  78. J. Ohnishi, M. Hayashi, S. Mitsuhashi, and M. Ikeda, “Efficient 40 degrees C fermentation of L-lysine by a new Corynebacterium glutamicum mutant developed by genome breeding,” Applied Microbiology and Biotechnology, vol. 62, no. 1, pp. 69–75, 2003. View at Publisher · View at Google Scholar
  79. B. L. Gómez and J. D. Nosanchuk, “Melanin and fungi,” Current Opinion in Infectious Diseases, vol. 16, no. 2, pp. 91–96, 2003. View at Google Scholar
  80. R. J. Kleijn, F. Liu, W. A. van Winden, W. M. van Gulik, C. Ras, and J. J. Heijnen, “Cytosolic NADPH metabolism in penicillin-G producing and non-producing chemostat cultures of Penicillium chrysogenum,” Metabolic Engineering, vol. 9, no. 1, pp. 112–123, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. U. Nasution, W. M. van Gulik, C. Ras, A. Proell, and J. J. Heijnen, “A metabolome study of the steady-state relation between central metabolism, amino acid biosynthesis and penicillin production in Penicillium chrysogenum,” Metabolic Engineering, vol. 10, no. 1, pp. 10–23, 2008. View at Publisher · View at Google Scholar · View at Scopus
  82. Y. Hadas, I. Goldberg, O. Pines, and D. Prusky, “Involvement of gluconic acid and glucose oxidase in the pathogenicity of Penicillium expansum in apples,” Phytopathology, vol. 97, no. 3, pp. 384–390, 2007. View at Publisher · View at Google Scholar · View at Scopus
  83. C.-S. Hwang, M. A. Flaishman, and P. E. Kolattukudy, “Cloning of a gene expressed during appressorium formation by Colletotrichum gloeosporioides and a marked decrease in virulence by disruption of this gene,” Plant Cell, vol. 7, no. 2, pp. 183–193, 1995. View at Publisher · View at Google Scholar · View at Scopus
  84. S. M. Beverley, K. L. Owens, M. Showalter et al., “Eukaryotic UDP-galactopyranose mutase (GLF Gene) in microbial and metazoal pathogens,” Eukaryotic Cell, vol. 4, no. 6, pp. 1147–1154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. M. Machida, K. Asai, M. Sano et al., “Genome sequencing and analysis of Aspergillus oryzae,” Nature, vol. 438, no. 7071, pp. 1157–1161, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. H. J. Pel, J. H. de Winde, D. B. Archer et al., “Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88,” Nature Biotechnology, vol. 25, no. 2, pp. 221–231, 2007. View at Publisher · View at Google Scholar · View at Scopus
  87. H. Bouws, A. Wattenberg, and H. Zorn, “Fungal secretomes—nature's toolbox for white biotechnology,” Applied Microbiology and Biotechnology, vol. 80, no. 3, pp. 381–388, 2008. View at Publisher · View at Google Scholar · View at Scopus
  88. A. Steinbüchel, “Nachwachsende rohstoffe für die weiße biotechnologie,” in Weiße Biotechnologie-Industrie im Aufbruch, S. Heiden and H. Zink, Eds., pp. 76–91, Biocom AG, Berlin, Germany, 2006. View at Google Scholar
  89. J. F. Peberdy, “Protein secretion in filamentous fungi—trying to understand a highly productive black box,” Trends in Biotechnology, vol. 12, no. 2, pp. 50–57, 1994. View at Publisher · View at Google Scholar · View at Scopus
  90. M. S. Jami, C. García-Estrada, C. Barreiro, A. A. Cuadrado, Z. Salehi-Najafabadi, and J. F. Martín, “The Penicillium chrysogenum extracellular proteome. Conversion from a food-rotting strain to a versatile cell factory for white biotechnology,” Molecular and Cellular Proteomics, vol. 9, no. 12, pp. 2729–2744, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. P. Shah, J. A. Atwood, R. Orlando, H. E. Mubarek, G. K. Podila, and M. R. Davis, “Comparative proteomic analysis of botrytis cinerea secretome,” Journal of Proteome Research, vol. 8, no. 3, pp. 1123–1130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  92. J. D. Bendtsen, H. Nielsen, G. von Heijne, and S. Brunak, “Improved prediction of signal peptides: signalP 3.0,” Journal of Molecular Biology, vol. 340, no. 4, pp. 783–795, 2004. View at Publisher · View at Google Scholar · View at Scopus
  93. J. D. Bendtsen, L. J. Jensen, N. Blom, G. von Heijne, and S. Brunak, “Feature-based prediction of non-classical and leaderless protein secretion,” Protein Engineering, Design and Selection, vol. 17, no. 4, pp. 349–356, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Choi, J. Park, D. Kim, K. Jung, S. Kang, and Y. H. Lee, “Fungal secretome database: integrated platform for annotation of fungal secretomes,” BMC Genomics, p. 105, 2010. View at Publisher · View at Google Scholar · View at Scopus
  95. G. Lum and X. J. Min, “FunSecKB: the fungal secretome knowledgeBase,” Database, vol. 2011, pp. 1–10, 2011. View at Publisher · View at Google Scholar
  96. C. J. Jeffery, “Moonlighting proteins,” Trends in Biochemical Sciences, vol. 24, no. 1, pp. 8–11, 1999. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Nickel, “The mystery of nonclassical protein secretion: a current view on cargo proteins and potential export routes,” European Journal of Biochemistry, vol. 270, no. 10, pp. 2109–2119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  98. W. Nickel, “Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells,” Traffic, vol. 6, no. 8, pp. 607–614, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. W. Nickel and C. Rabouille, “Mechanisms of regulated unconventional protein secretion,” Nature Reviews Molecular Cell Biology, vol. 10, no. 2, pp. 148–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  100. J. A. Simpson and E. S. C. Weiner, The Compact Oxford English Dictionary, Oxford University Press, New York, NY, USA, 2nd edition, 1992.
  101. C. Gancedo and C. L. Flores, “Moonlighting proteins in yeasts,” Microbiology and Molecular Biology Reviews, vol. 72, no. 1, pp. 197–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  102. C. L. Flores and C. Gancedo, “Unraveling moonlighting functions with yeasts,” IUBMB Life, vol. 63, no. 7, pp. 457–462, 2011. View at Publisher · View at Google Scholar
  103. J. A. K. W. Kiel, M. A. van den Berg, F. Fusetti et al., “Matching the proteome to the genome: the microbody of penicillin-producing Penicillium chrysogenum cells,” Functional and Integrative Genomics, vol. 9, no. 2, pp. 167–184, 2009. View at Publisher · View at Google Scholar · View at Scopus
  104. M. Oku and Y. Sakai, “Peroxisomes as dynamic organelles: autophagic degradation,” The FEBS Journal, vol. 277, no. 16, pp. 3289–3294, 2010. View at Publisher · View at Google Scholar · View at Scopus
  105. C. A. Cantwell, R. J. Beckmann, J. E. Dotzlaf et al., “Cloning and expression of a hybrid Streptomyces clavuligerus cefE gene in Penicillium chrysogenum,” Current Genetics, vol. 17, no. 3, pp. 213–221, 1990. View at Publisher · View at Google Scholar · View at Scopus
  106. R. V. Ullán, S. Campoy, J. Casqueiro, F. J. Fernandez, and J. F. Martín, “Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes,” Chemistry & Biology, vol. 14, pp. 329–339, 2007. View at Publisher · View at Google Scholar
  107. D. M. Harris, I. Westerlaken, D. Schipper et al., “Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor,” Metabolic Engineering, vol. 11, pp. 125–137, 2009. View at Publisher · View at Google Scholar
  108. J. M. Cantoral, S. Gutiérrez, F. Fierro, S. Gil-Espinosa, H. van Liempt, and J. F. Martín, “Biochemical characterization and molecular genetics of nine mutants of Penicillium chrysogenum impaired in penicillin biosynthesis,” Journal of Biological Chemistry, vol. 268, no. 1, pp. 737–744, 1993. View at Google Scholar · View at Scopus
  109. N. Yamashita, T. Motoyoshi, and A. Nishimura, “Purification and characterization of isoamyl alcohol oxidase (“Mureka”-forming enzyme),” Bioscience, Biotechnology, and Biochemistry, vol. 63, pp. 1216–1222, 1999. View at Publisher · View at Google Scholar
  110. H. E. Swaisgood, V. G. Janolino, and P. J. Skudder, “Continuous treatment of ultrahigh-temperature sterilized milk using immobilized sulfhydryl oxidase,” Methods in Enzymology, vol. 136, no. C, pp. 423–431, 1987. View at Publisher · View at Google Scholar · View at Scopus
  111. Y. Kodama, Y. Nakao, and T. Shimonaga, “Dihydroxy-acid dehydratase gene and use thereof,” USPTO Patent Application 20090148555, 2009.
  112. Y. Fuke, S. Kaminogawa, H. Matsuoka, and K. Yamauchi, “Purification and properties of aminopeptidase I from Penicillium caseicolum,” Journal of Dairy Science, vol. 71, pp. 1423–1431, 1988. View at Publisher · View at Google Scholar
  113. M. Srinivasan, A. R. Sudheer, and V. P. Menon, “Ferulic acid: therapeutic potential through its antioxidant property,” Journal of Clinical Biochemistry and Nutrition, vol. 40, no. 2, pp. 92–100, 2007. View at Publisher · View at Google Scholar · View at Scopus
  114. T. Koseki, S. Fushinobu, Ardiansyah, H. Shirakawa, and M. Komai, “Occurrence, properties, and applications of feruloyl esterases,” Applied Microbiology and Biotechnology, vol. 84, pp. 803–810, 2009. View at Publisher · View at Google Scholar