Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 313814, 7 pages
Review Article

Sarcomere Imaging by Quantum Dots for the Study of Cardiac Muscle Physiology

1Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo 105-8461, Japan
2Department of Physics, Waseda University, Tokyo 169-8555, Japan
3Department of Physics, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan

Received 20 October 2011; Accepted 7 January 2012

Academic Editor: P. Bryant Chase

Copyright © 2012 Fuyu Kobirumaki-Shimozawa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


We here review the use of quantum dots (QDs) for the imaging of sarcomeric movements in cardiac muscle. QDs are fluorescence substances (CdSe) that absorb photons and reemit photons at a different wavelength (depending on the size of the particle); they are efficient in generating long-lasting, narrow symmetric emission profiles, and hence useful in various types of imaging studies. Recently, we developed a novel system in which the length of a particular, single sarcomere in cardiomyocytes can be measured at ~30 nm precision. Moreover, our system enables accurate measurement of sarcomere length in the isolated heart. We propose that QDs are the ideal tool for the study of sarcomere dynamics during excitation-contraction coupling in healthy and diseased cardiac muscle.