Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 385245, 7 pages
http://dx.doi.org/10.1155/2012/385245
Research Article

Evaluation of DNA Single and Double Strand Breaks in Women with Cervical Neoplasia Based on Alkaline and Neutral Comet Assay Techniques

1División of Genétics, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social (IMSS), 2 de Abril No. 501, Colonia Independencia, 64720 Monterrey, NL, Mexico
2Dysplasia Clinic, Unidad Médica de Alta Especialidad-No. 23, Instituto Mexicano del Seguro Social (IMSS), Avenida Constitucion y Felix U Gomez. Col. obrera, 64000 Monterrey, NL, Mexico
3Facultad de Enfermería, Universidad Autónoma de Nuevo León, Avenida Gonzalitos, 1500 Norte, Col. Mitras Centro, Monterrey, NL, Mexico

Received 17 February 2012; Accepted 21 August 2012

Academic Editor: Thomas Liehr

Copyright © 2012 Elva I. Cortés-Gutiérrez et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. C. Hsu, L. M. Cherry, and N. A. Samaan, “Differential mutagen susceptibility in cultured lymphocytes of normal individuals and cancer patients,” Cancer Genetics and Cytogenetics, vol. 17, no. 4, pp. 307–313, 1985. View at Publisher · View at Google Scholar · View at Scopus
  2. E. I. Cortés-Gutiérrez, R. M. Cerda-Flores, and C. H. Leal-Garza, “Sister chromatid exchanges in peripheral lymphocytes from women with carcinoma of the uterine cervix,” Cancer Genetics and Cytogenetics, vol. 122, no. 2, pp. 121–123, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. C. H. Leal-Garza, R. M. Cerda-Flores, E. Leal-Elizondo, and E. I. Cortés-Gutiérrez, “Micronuclei in cervical smears and peripheral blood lymphocytes from women with and without cervical uterine cancer,” Mutation Research, vol. 515, no. 1-2, pp. 57–62, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Udumudi, M. Jaiswal, N. Rajeswari et al., “Risk assessment in cervical dysplasia patients by single cell gel electrophoresis assay: a study of DNA damage and repair,” Mutation Research, vol. 412, no. 2, pp. 195–205, 1998. View at Publisher · View at Google Scholar · View at Scopus
  5. E. I. Cortés-Gutiérrez, M. I. Dávila-Rodríguez, E. A. Zamudio-González, M. E. Aguado-Barrera, J. Vargas-Villarreal, and R. M. Cerda-Flores, “DNA damage in Mexican women with cervical dysplasia evaluated by comet assay,” Analytical and Quantitative Cytology and Histology, vol. 32, no. 4, pp. 207–213, 2010. View at Google Scholar · View at Scopus
  6. G. G. Hovhannisyan, “Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology,” Molecular Cytogenetics, vol. 3, no. 1, article 17, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Valverde and E. Rojas, “Environmental and occupational biomonitoring using the Comet assay,” Mutation Research, vol. 681, no. 1, pp. 93–109, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. R. Collins, A. A. Oscoz, G. Brunborg et al., “The comet assay: topical issues,” Mutagenesis, vol. 23, no. 3, pp. 143–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  9. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Google Scholar · View at Scopus
  10. O. Ostling and K. J. Johanson, “Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells,” Biochemical and Biophysical Research Communications, vol. 123, no. 1, pp. 291–298, 1984. View at Google Scholar · View at Scopus
  11. D. W. Fairbairn, P. L. Olive, and K. L. O'Neill, “The comet assay: a comprehensive review,” Mutation Research, vol. 339, no. 1, pp. 37–59, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. P. L. Olive, “DNA damage and repair in individual cells: applications of the comet assay in radiobiology,” International Journal of Radiation Biology, vol. 75, no. 4, pp. 395–405, 1999. View at Google Scholar · View at Scopus
  13. S. P. Jackson, “Sensing and repairing DNA double-strand breaks,” Carcinogenesis, vol. 23, no. 5, pp. 687–696, 2002. View at Google Scholar · View at Scopus
  14. R. J. Kruman and D. Solomon, Bethesda System for Reporting Cervical/Vaginal Cytologic Diagnosis, Springer, New York, NY, USA, 1994.
  15. W. T. Creasman, “New gynecologic cancer staging,” Obstetrics and Gynecology, vol. 75, no. 2, pp. 287–288, 1990. View at Google Scholar · View at Scopus
  16. N. P. Singh, M. T. McCoy, R. R. Tice, and E. L. Schneider, “A simple technique for quantitation of low levels of DNA damage in individual cells,” Experimental Cell Research, vol. 175, no. 1, pp. 184–191, 1988. View at Google Scholar · View at Scopus
  17. P. L. Olive and J. P. Banath, “Detection of DNA double-strand breaks through the cell cycle after exposure to X-rays, bleomycin, etoposide and 125IdUrd,” International Journal of Radiation Biology, vol. 64, no. 4, pp. 349–358, 1993. View at Google Scholar · View at Scopus
  18. J. L. Fernández, F. Vázquez-Gundín, M. T. Rivero, A. Genescá, J. Gosálvez, and V. Goyanes, “DBD-FISH on neutral comets: simultaneous analysis of DNA single- and double-strand breaks in individual cells,” Experimental Cell Research, vol. 270, no. 1, pp. 102–109, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Calini, C. Urani, and M. Camatini, “Comet assay evaluation of DNA single- and double-strand breaks induction and repair in C3H10T1/2 cells,” Cell Biology and Toxicology, vol. 18, no. 6, pp. 369–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. K. W. Caldecott, “Mammalian single-strand break repair: mechanisms and links with chromatin,” DNA Repair, vol. 6, no. 4, pp. 443–453, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. G. Chu, “Double strand break repair,” The Journal of Biological Chemistry, vol. 272, no. 39, pp. 24097–24100, 1997. View at Publisher · View at Google Scholar · View at Scopus
  22. K. H. Ramesh and M. K. Bhargava, “Cytogenetic damage in peripheral blood lymphocytes of cancer patients prior to radiotherapy,” Cancer Genetics and Cytogenetics, vol. 60, no. 1, pp. 86–88, 1992. View at Publisher · View at Google Scholar · View at Scopus
  23. N. B. Atkin, “Cytogenetics of carcinoma of the cervix uteri: a review,” Cancer Genetics and Cytogenetics, vol. 95, no. 1, pp. 33–39, 1997. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Ravoori, M. V. Vadhanam, D. D. Davey, C. Srinivasan, B. Nagarajan, and R. C. Gupta, “Modulation of novel DNA adducts during human uterine cervix cancer progression,” International Journal of Oncology, vol. 29, no. 6, pp. 1437–1443, 2006. View at Google Scholar · View at Scopus
  25. E. I. Cortés-Gutiérrez, M. I. Dávila-Rodríguez, J. Vargas-Villarreal, F. Hernández-Garza, and R. M. Cerda-Flores, “Association between human papilloma virus-type infections with micronuclei frequencies,” Prague Medical Report, vol. 111, no. 1, pp. 35–41, 2010. View at Google Scholar · View at Scopus
  26. D. M. Winder, M. R. Pett, N. Foster et al., “An increase in DNA double-strand breaks, induced by Ku70 depletion, is associated with human papillomavirus 16 episome loss and de novo viral integration events,” Journal of Pathology, vol. 213, no. 1, pp. 27–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Korzeniewski, N. Spardy, A. Duensing, and S. Duensing, “Genomic instability and cancer: lessons learned from human papillomaviruses,” Cancer Letters, vol. 305, no. 2, pp. 113–122, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Lee, J. H. Shim, C. W. Kho et al., “Protein profiling and identification of modulators regulated by the E7 oncogene in the C33A cell line by proteomics and genomics,” Proteomics, vol. 4, no. 3, pp. 839–848, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Moktar, S. Ravoori, M. V. Vadhanam, C. G. Gairola, and R. C. Gupta, “Cigarette smoke-induced DNA damage and repair detected by the comet assay in HPV-transformed cervical cells,” International Journal of Oncology, vol. 35, no. 6, pp. 1297–1304, 2009. View at Publisher · View at Google Scholar · View at Scopus