Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 510418, 12 pages
http://dx.doi.org/10.1155/2012/510418
Research Article

Quantitative Proteomic Study of Human Lung Squamous Carcinoma and Normal Bronchial Epithelial Acquired by Laser Capture Microdissection

1Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, China
2Judicial Police General Hospital, Changsha 410004, China
3Department of Gynecology and Obstetrics, Xiangya Hospital, Central South University, Changsha 410008, China
4Department of Cardiothoracic Surgery, Third Xiangya Hospital, Central South University, Changsha 410013, China
5Department of General Introduction to Surgery, School of Medicine, University of South China, Hengyang 421001, China
6Department of Biology, School of Pharmacy and Life Science, University of South China, Hengyang 421001, China

Received 8 June 2011; Revised 30 November 2011; Accepted 1 December 2011

Academic Editor: Kapil Mehta

Copyright © 2012 Xu Yan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. D. Lopez, “Counting the dead in China measuring tobacco inpact in the developing world,” BMJ, vol. 317, no. 170, pp. 1399–1400, 1998. View at Google Scholar
  2. R. F. Bonner, M. Emmert-Buck, K. Cole et al., “Laser capture microdissection: molecular analysis of tissue,” Science, vol. 278, no. 5342, pp. 1481–1491, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. A. R. Shekouh, C. C. Thompson, W. Prime et al., “Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma,” Proteomics, vol. 3, no. 10, pp. 1988–2001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Li, Y. Hong, Y. X. Tan et al., “Accurate qualitative and quantitative proteomic analysis of clinical hepatocellular carcinoma using laser capture microdissection coupled with isotope-coded affinity tag and two-dimensional liquid chromatography mass spectrometry,” Molecular and Cellular Proteomics, vol. 3, no. 4, pp. 399–409, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. H. Neubauer, S. E. Clare, R. Kurek et al., “Breast cancer proteomics by laser capture microdissection, sample pooling, 54-cm IPG IEF, and differential iodine radioisotope detection,” Electrophoresis, vol. 27, no. 9, pp. 1840–1852, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. V. Patel, B. L. Hood, A. A. Molinolo et al., “Proteomic analysis of laser-captured paraffin-embedded tissues: a molecular portrait of head and neck cancer progression,” Clinical Cancer Research, vol. 14, no. 4, pp. 1002–1014, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. K. Arai, T. Teratani, R. Kuruto-Niwa, T. Yamada, and R. Nozawa, “S100A9 expression in invasive ductal carcinoma of the breast: S100A9 expression in adenocarcinoma is closely associated with poor tumour differentiation,” European Journal of Cancer, vol. 40, no. 8, pp. 1179–1187, 2004. View at Publisher · View at Google Scholar · View at Scopus
  8. V. G. Keshamouni, G. Michailidis, C. S. Grasso et al., “Differential protein expression profiling by iTRAQ-2DLC-MS/MS of lung cancer cells undergoing epithelial-mesenchymal transition reveals a migratory/invasive phenotype,” Journal of Proteome Research, vol. 5, no. 5, pp. 1143–1154, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Garrido, A. Fromentin, B. Bonnotte et al., “Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones,” Cancer Research, vol. 58, no. 23, pp. 5495–5499, 1998. View at Google Scholar · View at Scopus
  10. C. Garrido, P. Mehlen, A. Fromentin et al., “Inconstant association between 27-kDa heat-shock protein (Hsp27) content and doxorubicin resistance in human colon cancer cells: the doxorubicin-protecting effect of Hsp27,” European Journal of Biochemistry, vol. 237, no. 3, pp. 653–659, 1996. View at Google Scholar · View at Scopus
  11. D. R. Ciocca and L. M. Vargas-Roig, “Hsp27 as a prognostic and predictive factor in cancer,” Progress in Molecular and Subcellular Biology, vol. 28, pp. 205–218, 2002. View at Google Scholar · View at Scopus
  12. P. Rocchi, A. So, S. Kojima et al., “Heat shock protein 27 increases after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer,” Cancer Research, vol. 64, no. 18, pp. 6595–6602, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. H. Guo, Y. Bai, P. Xu et al., “Functional promoter -1271G>C variant of HSPB1 predicts lung cancer risk and survival,” Journal of Clinical Oncology, vol. 28, no. 11, pp. 1928–1935, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Guo, N. X. Kang, Y. Li et al., “Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis,” BMC Cancer, vol. 9, article 100, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ye, A. Wang, B.-S. Lee et al., “Proteomic based identification of manganese superoxide dismutase 2 (SOD2) as a metastasis marker for oral squamous cell carcinoma,” Cancer Genomics and Proteomics, vol. 5, no. 2, pp. 85–93, 2008. View at Google Scholar
  16. A. Glen, C. S. Gan, F. C. Hamdy et al., “ITRAQ-facilitated proteomic analysis of human prostate cancer cells identifies proteins associated with progression,” Journal of Proteome Research, vol. 7, no. 3, pp. 897–907, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Tom, T. Lauren, M. Damien, B. S. Lee, and R. V. Benya, “Consequence of gastrin-releasing peptide receptor activation in a human colon cancer cell line: a proteomic approach,” Journal of Proteome Research, vol. 5, no. 6, pp. 1460–1468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. W. Michael, V. D. Leroi, S. Andreas et al., “Differential protein expressions in renal cell carcinoma: new biomarker discovery by mass spectrometry,” Journal of Proteome Research, vol. 8, no. 8, pp. 3797–3807, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Suminami, S. Nagashima, A. Murakami et al., “Suppression of a squamous cell carcinoma (SCC)-related serpin, SCC antigen, inhibits tumor growth with increased intratumor infiltration of natural killer cells,” Cancer Research, vol. 61, no. 5, pp. 1776–1780, 2001. View at Google Scholar · View at Scopus
  20. C. Katagiri, J. Nakanishi, K. Kadoya, and T. Hibino, “Serpin squamous cell carcinoma antigen inhibits UV-induced apoptosis via suppression of c-JUN NH2-terminal kinase,” Journal of Cell Biology, vol. 172, no. 7, pp. 983–990, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. K. I. Hashimoto, T. Kiyoshima, K. Matsuo, S. Ozeki, and H. Sakai, “Effect of SCCA1 and SCCA2 on the suppression of TNF-α-induced cell death by impeding the release of mitochondrial cytochrome c in an oral squamous cell carcinoma cell line,” Tumor Biology, vol. 26, no. 4, pp. 165–172, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. Q. Santina, V. Laura, T. Cristian et al., “SERPINB3 induces epithelial—mesenchymal transition,” Journal of Pathology, vol. 221, no. 3, pp. 343–356, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Seung-Wook, C. Kyounga, K. Chang-Hoon et al., “Proteomics-based identification of proteins secreted in apical surface fluid of squamous metaplastic human tracheobronchial epithelial cells cultured by three-dimensional organotypic air-liquid interface method,” Cancer Research, vol. 67, no. 14, pp. 6565–6573, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Tan and Z. Xiao, “Nasopharyngeal carcinoma,” International Journal of Oncology, vol. 34, no. 12, pp. 904–907, 2007. View at Google Scholar
  25. K. Arai, T. Teratani, and R. Nozawa, “Immunohistochemical investigation of S100A9 expression in pulmonary adenocarcinoma: S100A9 expression is associated with tumor differentiation,” Oncology Reports, vol. 8, no. 3, pp. 591–596, 2001. View at Google Scholar
  26. K. Arai, T. Yamada, and R. Nozawa, “Immunohistochemical investigation of migration inhibitory factor-related protein (MRP)-14 expression in hepatocellular carcinoma,” Medical Oncology, vol. 17, no. 3, pp. 183–188, 2000. View at Google Scholar · View at Scopus
  27. Y. Ito, K. Arai, Ryushi et al., “S100A9 expression is significantly linked to dedifferentiation of thyroid carcinoma,” Pathology Research and Practice, vol. 201, no. 8-9, pp. 551–556, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Ichikawa, R. Williams, L. Wang, T. Vogl, and G. Srikrishna, “S100A8/A9 activate key genes and pathways in colon tumor progression,” Molecular Cancer Research, vol. 9, no. 2, pp. 133–148, 2011. View at Publisher · View at Google Scholar