Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 510650, 6 pages
http://dx.doi.org/10.1155/2012/510650
Research Article

Synthesis of 1,5-Benzodiazepine and Its Derivatives by Condensation Reaction Using H-MCM-22 as Catalyst

S.O.S in Chemistry, Jiwaji University, Gwalior 474011, India

Received 2 December 2011; Revised 24 January 2012; Accepted 7 February 2012

Academic Editor: Daehee Kang

Copyright © 2012 Sheikh Abdul Majid et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. R. de Baun, F. M. Pallos, and D. R. Baker, “5-furoyl-2,2,4-trimethyl-1,4-dihydro-1H-1,5-benzodiazepine as an anti-inflammatory agent,” 1976, US Patent 3,978,227. View at Google Scholar
  2. J. R. de Baun, F. M. Pallos, and D. R. Baker, “5-furoyl-2,2,4-trimethyl-1,4-dihydro-1H-1,5-benzodiazepine as an anti-inflammatory agent,” Chemical Abstracts, vol. 86, p. 5498d, 1977. View at Google Scholar
  3. H. Schultz, Benzodiazepines, Springer, Heidelberg, Germany, 1982.
  4. R. K. Smiley, Comprehensive Organic Chemistry, Pergamon, Oxford, UK, 1979.
  5. J. K. Landquist, Comprehensive Heterocyclic Chemistry, vol. 1, Pergamon, Oxford, UK, 1984.
  6. L. O. Randall and B. Kappel, “Pharmacological activity of some benzodiazepines and their metabolites,” in Benzodiazepines, S. Garattini and E. Mussini, Eds., Raven, New York, NY, USA, 1973. View at Google Scholar
  7. R. C. Haris and J. M. Straley, “Lifting apparatus,” 1968, US Patent 1,537,757. View at Google Scholar
  8. A. M. El-Sayed, H. Abdel-Ghany, and A. M. M. El-Saghier, “A novel synthesis of pyrano(2,3-c)-, 1,3-oxazino(2,3 b)-,1,2,4- triazolo(3,4-b)-, oxazolo(2,3-b)-, furano(3,2-c)-, and 3-substituted- (1,5)benzodiazepin-2-ones,” Synthetic Communications, vol. 29, no. 20, pp. 3561–3572, 1999. View at Google Scholar · View at Scopus
  9. J. X. Xu, H. T. Wu, and S. Jin, “Cycloaddition of benzoheteroazepine II reactions and conformations of cycloadducts on 1, 5-benzothiazepines and 1,5-benzodiazepines with nitrile imine and nitrile oxides,” Chinese Journal of Chemistry, vol. 17, no. 1, pp. 84–91, 1999. View at Publisher · View at Google Scholar
  10. X. Y. Zhang, J. X. Xu, and S. Jin, “Cycloaddition of benzoheteroazepine reaction of 2,3-dihydro-lh-l,5-benzodiazepines with dichlorocarbene and stereo-structures of products,” Chinese Journal of Chemistry, vol. 17, no. 4, pp. 404–410, 1999. View at Google Scholar
  11. K. Kim, S. K. Volkman, and J. A. Ellman, “Synthesis of 3-substituted 1,4-benzodiazepin-2-ones,” Journal of the Brazilian Chemical Society, vol. 9, no. 4, pp. 375–379, 1998. View at Google Scholar · View at Scopus
  12. W. Reid and E. Torinus, “Über heterocyclische Siebenringsysteme, X. Synthesen kondensierter 5-, 7-und 8-gliedriger Heterocyclen mit 2 Stickstoffatomen,” Chemische Berichte, vol. 92, no. 11, pp. 2902–2916, 1959. View at Google Scholar
  13. J. A. L. Herbert and H. Suschitzky, “Syntheses of heterocyclic compounds. part xxix. substituted 2,3-dihydro-1h-1,5-benzodiazepines,” Journal of the Chemical Society, pp. 2657–2661, 1974. View at Google Scholar · View at Scopus
  14. H. R. Morales, A. Bulbarela, and R. Contreras, “New synthesis of dihydro-and tetrahydro-1,5-benzodiazepines by reductive condensation of o-phenylenediamine and ketones in the presence of sodium borohydride,” Heterocycles, vol. 24, no. 1, pp. 135–139, 1986. View at Google Scholar · View at Scopus
  15. D. I. Jung, T. W. Choi, Y. Y. Kim et al., “Synthesis Of 1,5-benzodiazepine derivatives,” Synthetic Communications, vol. 29, no. 11, pp. 1941–1951, 1999. View at Google Scholar
  16. M. S. Balakrishna and B. Kaboudin, “A simple and new method for the synthesis of 1,5-benzodiazepine derivatives on a solid surface,” Tetrahedron Letters, vol. 42, no. 6, pp. 1127–1129, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Curini, F. Epifano, M. C. Marcotullio, and O. Rosati, “Ytterbium triflate promoted synthesis of 1,5-benzodiazepine derivatives,” Tetrahedron Letters, vol. 42, no. 18, pp. 3193–3195, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Q. Pan, J. P. Zou, Z. H. Huang, and W. Zhang, “Ga(otf)3-promoted condensation reactions for 1,5-benzodiazepines and 1,5-benzothiazepines,” Tetrahedron Letters, vol. 49, no. 36, pp. 5302–5308, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Kumar, P. Chaudhary, S. Nimesh, A. K. Verma, and R. Chandra, “An efficient synthesis of 1,5-benzadiazepine derivatives catalyzed by silver nitrate,” Green Chemistry, vol. 8, no. 6, pp. 519–521, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Sivamurugan, K. Deepa, M. Palanichamy, and V. Murugesan, “[(l)proline]2zn catalysed synthesis of 1,5-benzodiazepine derivatives under solvent-free condition,” Synthetic Communications, vol. 34, no. 21, pp. 3833–3846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. P. Minothora, S. S. Julia, and A. T. Constantinos, “An efficient method for the synthesis of 1,5-benzodiazepine derivatives under microwave irradiation without solvent,” Tetrahedron Letters, vol. 43, no. 9, pp. 1755–1758, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. W. Y. Chen and J. Lu, “Molecular iodine catalyzed one-pot synthesis of 1, 5-benzodiazepine derivatives under solvent-free conditions,” Synlett, vol. 2005, no. 8, pp. 1337–1339, 2005. View at Publisher · View at Google Scholar
  23. D. V. Jarikote, S. A. Siddiqui, R. Rajagopal, D. Thomas, R. J. Lahoti, and K. V. Srinivasan, “Room temperature ionic liquid promoted synthesis of 1,5-benzodiazepine derivatives under ambient conditions,” Tetrahedron Letters, vol. 44, no. 9, pp. 1835–1838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. B. M. Reddy, P. M. Sreekamth, and V. R. Reddy, “Modified zirconia solid acid catalysts for organic synthesis and transformations,” Journal of Molecular Catalysis A, vol. 225, pp. 71–78, 2005. View at Google Scholar
  25. B. Kaboudin and K. Navaee, “Alumina/phosphorus pentoxide (app) as an efficient reagent for the synthesis of 1,5-benzodiazepines under microwave irradiation,” Heterocycles, vol. 55, no. 8, pp. 1443–1446, 2001. View at Google Scholar · View at Scopus
  26. J. S. Yadav, B. V. S. Reddy, S. Praveenkumar, K. Nagaiah, N. Lingaiah, and P. S. Saiprasad, “Ag3pw12o40: a novel and recyclable heteropoly acid for the synthesis of 1,5-benzodiazepines under solvent-free conditions,” Synthesis, no. 6, pp. 901–904, 2004. View at Google Scholar · View at Scopus
  27. M. A. Chari and K. Syamasundar, “Polymer (PVP) supported ferric chloride: an efficient and recyclable heterogeneous catalyst for high yield synthesis of 1,5-benzodiazepine derivatives under solvent free conditions and microwave irradiation,” Catalysis Communications, vol. 6, no. 1, pp. 67–70, 2005. View at Publisher · View at Google Scholar
  28. A. Hegedüs, Z. Hell, and A. Potor, “A simple environmentally-friendly method for the selective synthesis of 1,5-benzodiazepine derivatives using zeolite catalyst,” Catalysis Letters, vol. 105, no. 3-4, pp. 229–232, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. Shobha, M. A. Chari, S. T. Selvan et al., “Room temperature synthesis of 1,5-benzodiazepine and its derivatives using cage type mesoporous aluminosilicate catalysts,” Microporous and Mesoporous Materials, vol. 129, no. 1-2, pp. 112–117, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. Y. J. He, G. S. Nivarthy, F. Eder, K. Seshan, and J. A. Lercher, “Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36,” Microporous and Mesoporous Materials, vol. 25, no. 1–3, pp. 207–224, 1998. View at Google Scholar
  31. S. L. Lawton, A. S. Fung, G. J. Kennedy et al., “Zeolite MCM-49:? a three-dimensional MCM-22 analogue synthesized by in situ crystallization,” The Journal of Physical Chemistry, vol. 100, no. 9, pp. 3788–3798, 1996. View at Publisher · View at Google Scholar
  32. S. B. C. Pergher, A. Corma, and V. Fornés, “Preparation and characterization of MCM-22 zeolite and its layered precursor,” Química Nova, vol. 26, no. 6, pp. 795–802, 2003. View at Publisher · View at Google Scholar
  33. A. Corma, C. Corell, and J. Pérez-Pariente, “Synthesis and characterization of the MCM-22 zeolite,” Original Research Article Zeolites, vol. 15, no. 1, pp. 2–8, 1995. View at Google Scholar