Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 549020, 14 pages
http://dx.doi.org/10.1155/2012/549020
Review Article

Yeast and the AIDS Virus: The Odd Couple

Laboratoire Microbiologie Cellulaire et Moléculaire et Pathogénicité, UMR 5234-CNRS, Université Bordeaux Segalen, 146 Rue Leo Saignat, SFR TransBioMed, 33076 Bordeaux, France

Received 17 February 2012; Revised 14 April 2012; Accepted 16 April 2012

Academic Editor: Diego F. Gomez-Casati

Copyright © 2012 Marie-Line Andréola and Simon Litvak. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Goffeau, G. Barrell, H. Bussey et al., “Life with 6000 genes,” Science, vol. 274, no. 5287, pp. 546–567, 1996. View at Publisher · View at Google Scholar · View at Scopus
  2. W. H. Mager and J. Winderickx, “Yeast as a model for medical and medicinal research,” Trends in Pharmacological Sciences, vol. 26, no. 5, pp. 265–273, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. M. Steinmetz, C. Scharfe, A. M. Deutschbauer et al., “Systematic screen for human disease genes in yeast,” Nature Genetics, vol. 31, no. 4, pp. 400–404, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. D. B. Kushner, B. D. Lindenbach, V. Z. Grdzelishvili, A. O. Noueiry, S. M. Paul, and P. Ahlquist, “Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 26, pp. 15764–15769, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Panavas, E. Serviene, J. Brasher, and P. D. Nagy, “Yeast genome-wide screen reveals dissimilar sets of host genes affecting replication of RNA viruses,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7326–7331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. E. A. Winzeler, D. D. Shoemaker, A. Astromoff et al., “Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis,” Science, vol. 285, no. 5429, pp. 901–906, 1999. View at Publisher · View at Google Scholar
  7. Z. Sun, Z. Diaz, X. Fang et al., “Molecular determinants and genetic modifiers of aggregation and toxicity for the als disease protein fus/tls,” PLoS Biology, vol. 9, no. 4, Article ID e1000614, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Duennwald, “Polyglutamine misfolding in yeast: toxic and protective aggregation,” Prion, vol. 5, no. 4, pp. 285–290, 2011. View at Publisher · View at Google Scholar
  9. P. Valenzuela, A. Medina, and W. J. Rutter, “Synthesis and assembly of hepatitis B virus surface antigen particles in yeast,” Nature, vol. 298, no. 5872, pp. 347–350, 1982. View at Google Scholar · View at Scopus
  10. P. Y. Lum, C. D. Armour, S. B. Stepaniants et al., “Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes,” Cell, vol. 116, no. 1, pp. 121–137, 2004. View at Publisher · View at Google Scholar · View at Scopus
  11. D. J. DeMarini, V. K. Johnston, M. Konduri, L. L. Gutshall, and R. T. Sarisky, “Intracellular hepatitis C virus RNA-dependent RNA polymerase activity,” Journal of Virological Methods, vol. 113, no. 1, pp. 65–68, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. P. Kapoor, B. D. Lavoie, and L. Frappier, “EBP2 plays a key role in Epstein-Barr virus mitotic segregation and is regulated by Aurora family kinases,” Molecular and Cellular Biology, vol. 25, no. 12, pp. 4934–4945, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. R. P. Galao, N. Scheller, I. Alves-Rodrigues, T. Breinig, A. Meyerhans, and J. Díez, “Saccharomyces cerevisiae: a versatile eukaryotic system in virology,” Microbial Cell Factories, vol. 6, article 32, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. R. B. Wickner, “The yeast dsRNA Virus L-A resembles mammalian dsRNA virus cores,” in Segmented Double-Stranded RNA Viruses: Structure and Molecular Biology, J. T. Patton, Ed., Caister Academic Press, 2008. View at Google Scholar
  15. M. Janda and P. Ahlquist, “RNA-dependent replication, transcription, and persistence of brome mosaic virus RNA replicons in S. cerevisiae,” Cell, vol. 72, no. 6, pp. 961–970, 1993. View at Publisher · View at Google Scholar · View at Scopus
  16. P. D. Nagy, “Yeast as a model host to explore plant virus-host interactions,” Annual Review of Phytopathology, vol. 46, pp. 217–242, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. P. C. Angeletti, K. Kim, F. J. Fernandes, and P. F. Lambert, “Stable replication of papillomavirus genomes in Saccharomyces cerevisiae,” Journal of Virology, vol. 76, no. 7, pp. 3350–3358, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. T. Panavas and P. D. Nagy, “Yeast as a model host to study replication and recombination of defective interfering RNA of Tomato bushy stunt virus,” Virology, vol. 314, no. 1, pp. 315–325, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. V. Pantaleo, L. Rubino, and M. Russo, “Replication of Carnation Italian ringspot virus defective interfering RNA in Saccharomyces cerevisiae,” Journal of Virology, vol. 77, no. 3, pp. 2116–2123, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. V. Raghavan, P. S. Malik, N. R. Choudhury, and S. K. Mukherjee, “The DNA-A component of a plant Geminivirus (Indian Mung Bean Yellow Mosaic Virus) replicates in budding yeast cells,” Journal of Virology, vol. 78, no. 5, pp. 2405–2413, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. K. N. Zhao and I. H. Frazer, “Saccharomyces cerevisiae is permissive for replication of bovine papillomavirus type 1,” Journal of Virology, vol. 76, no. 23, pp. 12265–12273, 2002. View at Publisher · View at Google Scholar · View at Scopus
  22. B. D. Price, L. D. Eckerle, L. A. Ball, and K. L. Johnson, “Nodamura virus RNA replication in Saccharomyces cerevisiae: Heterologous gene expression allows replication-dependent colony formation,” Journal of Virology, vol. 79, no. 1, pp. 495–502, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Fields and O. K. Song, “A novel genetic system to detect protein-protein interactions,” Nature, vol. 340, no. 6230, pp. 245–246, 1989. View at Google Scholar · View at Scopus
  24. J. Luban and S. P. Goff, “The yeast two-hybrid system for studying protein-protein interactions,” Current Opinion in Biotechnology, vol. 6, no. 1, pp. 59–64, 1995. View at Publisher · View at Google Scholar · View at Scopus
  25. G. V. Kalpana, S. Marmon, W. Wang, G. R. Crabtree, and S. P. Goff, “Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5,” Science, vol. 266, no. 5193, pp. 2002–2006, 1994. View at Google Scholar · View at Scopus
  26. J. C. Rain, A. Cribier, A. Gérard, S. Emiliani, and R. Benarous, “Yeast two-hybrid detection of integrase-host factor interactions,” Methods, vol. 47, no. 4, pp. 291–297, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. V. R. De Soultrait, A. Caumont, V. Parissi et al., “A novel short peptide is a specific inhibitor of the human immunodeficiency virus type 1 integrase,” Journal of Molecular Biology, vol. 318, no. 1, pp. 45–58, 2002. View at Publisher · View at Google Scholar · View at Scopus
  28. D. McDonald, M. A. Vodicka, G. Lucero et al., “Visualization of the intracellular behavior of HIV in living cells,” Journal of Cell Biology, vol. 159, no. 3, pp. 441–452, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. J. M. Coffin, H. S. Hughes, and H. Varmus, Retroviruses, Cold Spring Harbor Laboratory, 1997.
  30. D. V. Nissley, P. L. Boyer, D. J. Garfinkel, S. H. Hughes, and J. N. Strathern, “Hybrid Ty1/HIV-1 elements used to detect inhibitors and monitor the activity of HIV-1 reverse transcriptase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 23, pp. 13905–13910, 1998. View at Publisher · View at Google Scholar · View at Scopus
  31. P. J. Barr, M. D. Power, and C. T. Lee-Ng, “Expression of active human immunodeficiency virus reverse transcriptase in Saccharomyces cerevisiae,” BioTechnology, vol. 5, no. 5, pp. 486–489, 1987. View at Google Scholar · View at Scopus
  32. E. Asante-Appiah and A. M. Skalka, “HIV-1 integrase: structural organization, conformational changes, and catalysis.,” Advances in virus research, vol. 52, pp. 351–369, 1999. View at Google Scholar · View at Scopus
  33. R. Craigie, “Retroviral DNA integration,” in Mobile DNA II, N. L. Craig, R. Craigie, M. Gellert, and A. M. Lambowitz, Eds., pp. 613–630, ASM Press, Washington, DC, USA, 2002. View at Google Scholar
  34. O. Delelis, K. Carayon, A. Saïb, E. Deprez, and J. F. Mouscadet, “Integrase and integration: biochemical activities of HIV-1 integrase,” Retrovirology, vol. 5, article 114, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. G. N. Maertens, S. Hare, and P. Cherepanov, “The mechanism of retroviral integration from X-ray structures of its key intermediates,” Nature, vol. 468, no. 7321, pp. 326–329, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. P. Cherepanov, G. N. Maertens, and S. Hare, “Structural insights into the retroviral DNA integration apparatus,” Current Opinion in Structural Biology, vol. 21, no. 2, pp. 249–256, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. E. Valkov, S. S. Gupta, S. Hare et al., “Functional and structural characterization of the integrase from the prototype foamy virus,” Nucleic Acids Research, vol. 37, no. 1, pp. 243–255, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Barnes and J. Rine, “Regulated expression of endonuclease EcoRI in Saccharomyces cerevisiae: nuclear entry and biological consequences,” Proceedings of the National Academy of Sciences of the United States of America, vol. 82, no. 5, pp. 1354–1358, 1985. View at Google Scholar · View at Scopus
  39. A. B. Caumont, G. A. Jamieson, S. Pichuantes, A. T. Nguyen, S. Litvak, and C. H. Dupont, “Expression of functional HIV-1 integrase in the yeast Saccharomyces cerevisiae leads to the emergence of a lethal phenotype: potential use for inhibitor screening,” Current Genetics, vol. 29, no. 6, pp. 503–510, 1996. View at Publisher · View at Google Scholar · View at Scopus
  40. Z. Xu, Y. Zheng, Z. Ao et al., “Contribution of the C-terminal region within the catalytic core domain of HIV-1 integrase to yeast lethality, chromatin binding and viral replication,” Retrovirology, vol. 5, article 102, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. V. Parissi, A. Caumont, V. R. De Soultrait et al., “The lethal phenotype observed after HIV-1 integrase expression in yeast cells is related to DNA repair and recombination events,” Gene, vol. 322, no. 1-2, pp. 157–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Parissi, A. Caumont, V. Richard De Soultrait, C. H. Dupont, S. Pichuantes, and S. Litvak, “Inactivation of the SNF5 transcription factor gene abolishes the lethal phenotype induced by the expression of HIV-1 integrase in yeast,” Gene, vol. 247, no. 1-2, pp. 129–136, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. V. R. De Soultrait, A. Caumont, P. Durrens et al., “HIV-1 integrase interacts with yeast microtubule-associated proteins,” Biochimica et Biophysica Acta, vol. 1575, no. 1-3, pp. 40–48, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Desfarges, B. Salin, C. Calmels, M. L. Andreola, V. Parissi, and M. Fournier, “HIV-1 integrase trafficking in S. cerevisiae: a useful model to dissect the microtubule network involvement of viral protein nuclear import,” Yeast, vol. 26, no. 1, pp. 39–54, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. N. Arhel, S. Munier, P. Souque, K. Mollier, and P. Charneau, “Nuclear import defect of human immunodeficiency virus type 1 DNA flap mutants is not dependent on the viral strain or target cell type,” Journal of Virology, vol. 80, no. 20, pp. 10262–10269, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. S. Desfarges, J. San Filippo, M. Fournier et al., “Chromosomal integration of LTR-flanked DNA in yeast expressing HIV-1 integrase: down regulation by RAD51,” Nucleic Acids Research, vol. 34, no. 21, pp. 6215–6224, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Lau, R. Kanaar, S. P. Jackson, and M. J. O'Connor, “Suppression of retroviral infection by the RAD52 DNA repair protein,” EMBO Journal, vol. 23, no. 16, pp. 3421–3429, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. O. Cosnefroy, A. Tocco, P. Lesbats et al., “Stimulation of the human RAD51 nucleofilament restricts HIV-1 integration in vitro and in infected cells,” Journal of Virology, vol. 86, no. 1, pp. 513–526, 2012. View at Publisher · View at Google Scholar
  49. R. Blanco, L. Carrasco, and I. Ventoso, “Cell killing by HIV-1 protease,” Journal of Biological Chemistry, vol. 278, no. 2, pp. 1086–1093, 2003. View at Publisher · View at Google Scholar · View at Scopus
  50. K. Ogawa, R. Shibata, T. Kiyomasu et al., “Mutational analysis of the human immunodeficiency virus vpr open reading frame,” Journal of Virology, vol. 63, no. 9, pp. 4110–4114, 1989. View at Google Scholar · View at Scopus
  51. E. A. Cohen, E. F. Terwilliger, Y. Jalinoos, J. Proulx, J. G. Sodroski, and W. A. Haseltine, “Identification of HIV-1 vpr product and function,” Journal of Acquired Immune Deficiency Syndromes, vol. 3, no. 1, pp. 11–18, 1990. View at Google Scholar
  52. M. Kogan and J. Rappaport, “HIV-1 Accessory Protein Vpr: relevance in the pathogenesis of HIV and potential for therapeutic intervention,” Retrovirology, vol. 8, article 25, 2011. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Chang, F. Re, S. Sebastian, S. Sazer, and J. Luban, “HIV-1 Vpr induces defects in mitosis, cytokinesis, nuclear structure, and centrosomes,” Molecular Biology of the Cell, vol. 15, no. 4, pp. 1793–1801, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. S. Huard, M. Chen, K. E. Burdette et al., “HIV-1 Vpr-induced cell death in Schizosaccharomyces pombe is reminiscent of apoptosis,” Cell Research, vol. 18, no. 9, pp. 961–973, 2008. View at Publisher · View at Google Scholar · View at Scopus
  55. J. Sodroski, W. C. Goh, and C. Rosen, “A second post-transcriptional trans-activator gene required for HTLV-III replication,” Nature, vol. 321, no. 6068, pp. 412–417, 1986. View at Google Scholar · View at Scopus
  56. M. Feinberg, R. F. Jarrett, and A. Aldovini, “HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA,” Cell, vol. 46, no. 6, pp. 807–817, 1986. View at Google Scholar · View at Scopus
  57. V. W. Pollard and M. H. Malim, “The HIV-1 Rev protein,” Annual Review of Microbiology, vol. 52, pp. 491–532, 1998. View at Publisher · View at Google Scholar · View at Scopus
  58. S. Kubota and R. J. Pomerantz, “A cis-acting peptide signal in human immunodeficiency virus type I Rev which inhibits nuclear entry of small proteins,” Oncogene, vol. 16, no. 14, pp. 1851–1861, 1998. View at Google Scholar · View at Scopus
  59. M. H. Malim, J. Hauber, S. Y. Le, J. V. Maizel, and B. R. Cullen, “The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA,” Nature, vol. 338, no. 6212, pp. 254–257, 1989. View at Google Scholar · View at Scopus
  60. F. Stutz, M. Neville, and M. Rosbash, “Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast,” Cell, vol. 82, no. 3, pp. 495–506, 1995. View at Google Scholar · View at Scopus
  61. F. Stutz, E. Izaurralde, I. W. Mattaj, and M. Rosbash, “A role for nucleoporin FG repeat domains in export of human immunodeficiency virus type 1 Rev protein and RNA from the nucleus,” Molecular and Cellular Biology, vol. 16, no. 12, pp. 7144–7150, 1996. View at Google Scholar · View at Scopus
  62. A. Kiss, L. Li, T. Gettemeier, and L. K. Venkatesh, “Functional analysis of the interaction of the human immunodeficiency virus type 1 Rev nuclear export signal with its cofactors,” Virology, vol. 314, no. 2, pp. 591–600, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. G. Faijot, A. Sergeant, and I. Mikaélian, “A new nucleoporin-like protein interacts with both HIV-1 Rev nuclear export signal and CRM-1,” Journal of Biological Chemistry, vol. 274, no. 24, pp. 17309–17317, 1999. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Lee, D. H. Lee, and D. G. Lee, “Candidacidal effects of Rev (11-20) derived from HIV-1 Rev protein,” Molecules and Cells, vol. 28, no. 4, pp. 403–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  65. J. Lee and D. G. Lee, “Antifungal properties of a peptide derived from the signal peptide of the HIV-1 regulatory protein, Rev,” FEBS Letters, vol. 583, no. 9, pp. 1544–1547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  66. W. Wilson, M. Braddock, S. E. Adams, P. D. Rathjen, S. M. Kingsman, and A. J. Kingsman, “HIV expression strategies: ribosomal frameshifting is directed by a short sequence in both mammalian and yeast systems,” Cell, vol. 55, no. 6, pp. 1159–1169, 1988. View at Google Scholar · View at Scopus
  67. L. Bidou, G. Stahl, B. Grima, H. Liu, M. Cassan, and J. P. Rousset, “In vivo HIV-1 frameshifting efficiency is directly related to the stability of the stem-loop stimulatory signal,” RNA, vol. 3, no. 10, pp. 1153–1158, 1997. View at Google Scholar · View at Scopus
  68. D. W. Staple and S. E. Butcher, “Solution structure of the HIV-1 frameshift inducing stem-loop RNA,” Nucleic Acids Research, vol. 31, no. 15, pp. 4326–4331, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. L. Bidou, J. P. Rousset, and O. Namy, “Translational errors: from yeast to new therapeutic targets,” FEMS Yeast Research, vol. 10, no. 8, pp. 1070–1082, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. E. P. Plant and J. D. Dinman, “Torsional restraint: a new twist on frameshifting pseudoknots,” Nucleic Acids Research, vol. 33, no. 6, pp. 1825–1833, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. F. Dos Ramos, M. Carrasco, T. Doyle, and I. Brierley, “Programmed-1 ribosomal frameshifting in the SARS coronavirus,” Biochemical Society Transactions, vol. 32, no. 6, pp. 1081–1083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  72. I. Brierley and F. J. Dos Ramos, “Programmed ribosomal frameshifting in HIV-1 and the SARS-CoV,” Virus Research, vol. 119, no. 1, pp. 29–42, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. K. A. Hudak, J. D. Dinman, and N. E. Tumer, “Pokeweed antiviral protein accesses ribosomes by binding to L3,” Journal of Biological Chemistry, vol. 274, no. 6, pp. 3859–3864, 1999. View at Publisher · View at Google Scholar · View at Scopus