Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 614356, 14 pages
http://dx.doi.org/10.1155/2012/614356
Research Article

Differential Control of Growth, Apoptotic Activity, and Gene Expression in Human Breast Cancer Cells by Extracts Derived from Medicinal Herbs Zingiber officinale

1Biological Sciences Department, Faculty of Sciences, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
2Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
3Zoology Department, Faculty of Science, Suez Canal University, Ismailia, Egypt

Received 5 March 2012; Revised 1 July 2012; Accepted 2 July 2012

Academic Editor: Anne Hamburger

Copyright © 2012 Ayman I. Elkady et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. G. Brody and R. A. Rudel, “Environmental pollutants and breast cancer,” Environmental Health Perspectives, vol. 111, no. 8, pp. 1007–1019, 2003. View at Google Scholar · View at Scopus
  2. B. Fisher, J. P. Costantino, D. L. Wickerham et al., “Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 study,” Journal of the National Cancer Institute, vol. 90, no. 18, pp. 1371–1388, 1998. View at Google Scholar · View at Scopus
  3. J. Cuzick, J. Forbes, R. Edwards et al., “First results from the international breast cancer intervention study (IBIS-I): a randomised prevention trial,” The Lancet, vol. 360, pp. 817–824, 2002. View at Publisher · View at Google Scholar
  4. S. Martino, J. A. Cauley, E. Barrett-Connor et al., “Continuing outcomes relevant to evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene,” Journal of National Cancer Institute, vol. 96, pp. 1751–1761, 2004. View at Publisher · View at Google Scholar
  5. N. Normanno, M. Di Maio, E. De Maio et al., “Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer,” Endocrine-Related Cancer, vol. 12, no. 4, pp. 721–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. R. S. Braithwaite, R. T. Chlebowski, J. Lau, S. George, R. Hess, and N. F. Col, “Meta-analysis of vascular and neoplastic events asociated with tamoxifen,” Journal of General Internal Medicine, vol. 18, no. 11, pp. 937–947, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. R. A. Campbell, P. Bhat-Nakshatri, N. M. Patel, D. Constantinidou, S. Ali, and H. Nakshatri, “Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance,” Journal of Biological Chemistry, vol. 276, no. 13, pp. 9817–9824, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. R. S. Wong, “Apoptosis in cancer: from pathogenesis to treatment,” Journal of Experimental Clinical Cancer Research, vol. 30, no. 1, article 87, 2011. View at Publisher · View at Google Scholar
  10. J. Wu, “Apoptosis and angiogenesis: two promising tumor markers in breast cancer,” Anticancer Research, vol. 16, no. 4, pp. 2233–2239, 1996. View at Google Scholar · View at Scopus
  11. S. C. Gupta, J. H. Kim, S. Prasad, and B. B. Aggarwal, “Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals,” Cancer and Metastasis Reviews, vol. 29, no. 3, pp. 405–434, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Khan, F. Afaq, and H. Mukhtar, “Apoptosis by dietary factors: the suicide solution for delaying cancer growth,” Carcinogenesis, vol. 28, no. 2, pp. 233–239, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. E. J. Park and J. M. Pezzuto, “Botanicals in cancer chemoprevention,” Cancer and Metastasis Reviews, vol. 21, no. 3-4, pp. 231–255, 2002. View at Publisher · View at Google Scholar · View at Scopus
  14. R. D. Altman and K. C. Marcusse, “Effects of a ginger extract on knee pain in patients with osteoarthritis,” Arthritis & Rheumatism, vol. 44, pp. 2531–2538, 2001. View at Google Scholar
  15. M. C. Unnikrishnan and R. Kuttan, “Cytotoxicity of extracts of spices to cultured cells,” Nutrition and Cancer, vol. 11, no. 4, pp. 251–257, 1988. View at Google Scholar · View at Scopus
  16. J. Rhode, S. Fogoros, S. Zick et al., “Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells,” BMC Complementary and Alternative Medicine, vol. 7, article 44, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Y. Shukla and M. Singh, “Cancer preventive properties of ginger: a brief review,” Food and Chemical Toxicology, vol. 45, no. 5, pp. 683–690, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. N. Miyoshi, Y. Nakamura, Y. Ueda et al., “Dietary ginger constituents, galanals A and B, are potent apoptosis inducers in Human T lymphoma Jurkat cells,” Cancer Letters, vol. 199, no. 2, pp. 113–119, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Wang, X. Li, F. Huang et al., “Antitumor effect of β-elemene in non-small-cell lung cancer cells is mediated via induction of cell cycle arrest and apoptotic cell death,” Cellular and Molecular Life Sciences, vol. 62, no. 7-8, pp. 881–893, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. M. H. Hsu, S. C. Kuo, C. J. Chen, J. G. Chung, Y. Y. Lai, and L. J. Huang, “1-(3,4-Dimethoxyphenyl)-3,5-dodecenedione (I6) induces G1 arrest and apoptosis in human promyelocytic leukemia HL-60 cells,” Leukemia Research, vol. 29, no. 12, pp. 1399–1406, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. N. P. Seeram, L. S. Adams, M. L. Hardy, and D. Heber, “Total cranberry extract versus its phytochemical constituents: antiproliferative and synergistic effects against human tumor cell lines,” Journal of Agricultural and Food Chemistry, vol. 52, no. 9, pp. 2512–2517, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. N. P. Seeram, L. S. Adams, S. M. Henning et al., “In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice,” Journal of Nutritional Biochemistry, vol. 16, no. 6, pp. 360–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. A. I. El-kady, “Crude extract of nigella sativa inhibits proliferation and induces apoptosis in human cervical carcinoma heLa cells,” In press.
  24. A. I. El-Kady, S. Sun, Y.-X. Li, and J. D. Lia, “Cyclin D1 inhibits whereas c-Myc enhances the cytotoxicity of cisplatin in mouse pancreatic cancer cells via regulation of several members of the NF-fÈB and Bcl-2 families,” Journal of Carcinogenesis, vol. 10, article 24, 2011. View at Publisher · View at Google Scholar
  25. N. A. Baeshen, A. I. Elkady, O. A. Abuzinadah, and M. H. Mutwakil, “Potential anticancer activity of the medicinal herb, Rhazya stricta, against human breast cancer,” African Journal of Biotechnology, vol. 11, no. 37, pp. 8960–8972, 2012. View at Google Scholar
  26. D. L. Morse, H. Gray, C. M. Payne, and R. J. Gillies, “Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells,” Molecular Cancer Therapeutics, vol. 4, no. 10, pp. 1495–1504, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Nagata, “Apoptotic DNA fragmentation,” Experimental Cell Research, vol. 256, no. 1, pp. 12–18, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. J. C. Reed, “Warner-Lambert/Parke Davis award lecture: mechanisms of apoptosis,” American Journal of Pathology, vol. 157, no. 5, pp. 1415–1430, 2000. View at Google Scholar · View at Scopus
  29. S. Van Cruchten and W. Van den Broeck, “Morphological and biochemical aspects of apoptosis, oncosis and necrosis,” Anatomia, Histologia, Embryologia, vol. 31, no. 4, pp. 214–223, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Burlacu, “Regulation of apoptosis by Bcl-2 family proteins,” Journal of Cellular and Molecular Medicine, vol. 7, no. 3, pp. 249–257, 2003. View at Google Scholar · View at Scopus
  31. H. Nakshatri, P. Bhat-Nakshatri, D. A. Martin, R. J. Goulet, and G. W. Sledge, “Constitutive activation of NF-κB during progression of breast cancer to hormone-independent growth,” Molecular and Cellular Biology, vol. 17, no. 7, pp. 3629–3639, 1997. View at Google Scholar · View at Scopus
  32. K. M. Ahmed, S. Dong, M. Fan, and J. J. Li, “Nuclear factor-κB p65 inhibits mitogen-activated protein kinase signaling pathway in radioresistant breast cancer cells,” Molecular Cancer Research, vol. 4, no. 12, pp. 945–955, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. F. Pacifico and A. Leonardi, “NF-κB in solid tumors,” Biochemical Pharmacology, vol. 72, no. 9, pp. 1142–1152, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. G. E. Sonenshein, “Rel/NF-κB transcription factors and the control of apoptosis,” Seminars in Cancer Biology, vol. 8, no. 2, pp. 113–119, 1997. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Gillett, V. Fantl, R. Smith et al., “Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining,” Cancer Research, vol. 54, no. 7, pp. 1812–1817, 1994. View at Google Scholar · View at Scopus
  36. J. Bartkova, J. Lukas, H. Muller, D. Lutzhoft, M. Strauss, and J. Bartek, “Cyclin D1 protein expression and function in human breast cancer,” International Journal of Cancer, vol. 57, no. 3, pp. 353–361, 1994. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Dickson, V. Fantl, C. Gillett et al., “Amplification of chromosome band 11q13 and a role for cyclin D1 in human breast cancer,” Cancer Letters, vol. 90, no. 1, pp. 43–50, 1995. View at Publisher · View at Google Scholar · View at Scopus
  38. O. W. J. Prall, B. Sarcevic, E. A. Musgrove, C. K. W. Watts, and R. L. Sutherland, “Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2,” Journal of Biological Chemistry, vol. 272, no. 16, pp. 10882–10894, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. A. J. Skildum, S. Mukherjee, and S. E. Conrad, “The cyclin-dependent kinase inhibitor p21WAF1/Cip1 is an antiestrogen-regulated inhibitor of Cdk4 in human breast cancer cells,” Journal of Biological Chemistry, vol. 277, no. 7, pp. 5145–5152, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Osborne, P. Wilson, and D. Tripathy, “Oncogenes and tumor suppressor genes in breast cancer: potential diagnostic and therapeutic applications,” Oncologist, vol. 9, no. 4, pp. 361–377, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. K. Mokbel, C. N. Parris, M. Ghilchik, G. Williams, and R. F. Newbold, “The association between telomerase, histopathological parameters, and KI-67 expression in breast cancer,” American Journal of Surgery, vol. 178, no. 1, pp. 69–72, 1999. View at Publisher · View at Google Scholar · View at Scopus
  42. K. M. Mokbel, C. N. Parris, M. Ghilchik, C. N. Amerasinghe, and R. F. Newbold, “Telomerase activity and lymphovascular invasion in breast cancer,” European Journal of Surgical Oncology, vol. 26, no. 1, pp. 30–33, 2000. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Rahman, F. Salehin, and A. Iqbal, “In vitro antioxidant and anticancer activity of young Zingiber officinale against human breast carcinoma cell lines,” BMC Complementary and Alternative Medicine, vol. 11, article 79, 2011. View at Google Scholar
  44. K. Hostanska, T. Nisslein, J. Freudenstein, J. Reichling, and R. Saller, “Cimicifuga racemosa extract inhibits proliferation of estrogen receptor-positive and negative human breast carcinoma cell lines by induction of apoptosis,” Breast Cancer Research and Treatment, vol. 84, no. 2, pp. 151–160, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. V. Soto-Cerrato, E. Llagostera, B. Montaner, G. L. Scheffer, and R. Perez-Tomas, “Mitochondria-mediated apoptosis operating irrespective of multidrug resistance in breast cancer cells by the anticancer agent prodigiosin,” Biochemical Pharmacology, vol. 68, no. 7, pp. 1345–1352, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. H. L. Yang, C. S. Chen, W. H. Chang et al., “Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata,” Cancer Letters, vol. 231, no. 2, pp. 215–227, 2006. View at Publisher · View at Google Scholar · View at Scopus
  47. A. Saraste and K. Pulkki, “Morphologic and biochemical hallmarks of apoptosis,” Cardiovascular Research, vol. 45, no. 3, pp. 528–537, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. J. B. Baell and D. C. S. Huang, “Prospects for targeting the Bcl-2 family of proteins to develop novel cytotoxic drugs,” Biochemical Pharmacology, vol. 64, no. 5-6, pp. 851–863, 2002. View at Publisher · View at Google Scholar · View at Scopus
  49. L. K. Leung and T. T. Y. Wang, “Differential effects of chemotherapeutic agents on the Bcl-2/Bax apoptosis pathway in human breast cancer cell line MCF-7,” Breast Cancer Research and Treatment, vol. 55, no. 1, pp. 73–83, 1999. View at Publisher · View at Google Scholar · View at Scopus
  50. G. Sethi, B. Sung, and B. B. Aggarwal, “Nuclear factor-κB activation: from bench to bedside,” Experimental Biology and Medicine, vol. 233, no. 1, pp. 21–31, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Ling, H. Yang, S. H. Tan, W. K. Chui, and E. H. Chew, “6-Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase-9 expression via blockade of nuclear factor-κB activation,” British Journal of Pharmacology, vol. 161, no. 8, pp. 1763–1777, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. Y. Takada, A. Murakami, and B. B. Aggarwal, “Zerumbone abolishes NF-κB and IκBα kinase activation leading to suppression of antiapoptotic and metastatic gene expression, upregulation of apoptosis, and downregulation of invasion,” Oncogene, vol. 24, no. 46, pp. 6957–6969, 2005. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Y. Chuang, Y. F. Huang, H. F. Lu et al., “Coumarin induces cell cycle arrest and apoptosis in human cervical cancer HeLa cells through a mitochondria- andcaspase-3 dependent mechanism and NF-κB down-regulation,” In Vivo, vol. 21, no. 6, pp. 1003–1009, 2007. View at Google Scholar · View at Scopus
  54. R. Vidya Priyadarsini, R. Senthil Murugan, S. Maitreyi, K. Ramalingam, D. Karunagaran, and S. Nagini, “The flavonoid quercetin induces cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-κB inhibition,” European Journal of Pharmacology, vol. 649, no. 1–3, pp. 84–91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. S. K. Srivastava and S. V. Singh, “Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells,” Carcinogenesis, vol. 25, no. 9, pp. 1701–1709, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. Y. Li, F. Ahmed, S. Ali, P. A. Philip, O. Kucuk, and F. H. Sarkar, “Inactivation of nuclear factor κB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells,” Cancer Research, vol. 65, no. 15, pp. 6934–6942, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. C. E. Caldon, R. J. Daly, R. L. Sutherland, and E. A. Musgrove, “Cell cycle control in breast cancer cells,” Journal of Cellular Biochemistry, vol. 97, no. 2, pp. 261–274, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Arnold and A. Papanikolaou, “Cyclin D1 in breast cancer pathogenesis,” Journal of Clinical Oncology, vol. 23, no. 18, pp. 4215–4224, 2005. View at Publisher · View at Google Scholar · View at Scopus
  59. S. M. Meeran and S. K. Katiyar, “Cell cycle control as a basis for cancer chemoprevention through dietary agents,” Frontiers in Bioscience, vol. 13, no. 6, pp. 2191–2202, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Mukhopadhyay, S. Banerjee, L. J. Stafford, C. Xia, M. Liu, and B. B. Aggarwal, “Curcumin-induced suppression of cell proliferation correlates with down-regulation of cyclin D1 expression and CDK4-mediated retinoblastoma protein phosphorylation,” Oncogene, vol. 21, no. 57, pp. 8852–8861, 2002. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Pervin, R. Singh, and G. Chaudhuri, “Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 6, pp. 3583–3588, 2001. View at Publisher · View at Google Scholar · View at Scopus
  62. J. L. Gooch, R. E. Herrera, and D. Yee, “The role of p21 in interferon γ-mediated growth inhibition of human breast cancer cells,” Cell Growth and Differentiation, vol. 11, no. 6, pp. 335–342, 2000. View at Google Scholar · View at Scopus
  63. N. W. Kim, M. A. Piatyszek, K. R. Prowse et al., “Specific association of human telomerase activity with immortal cells and cancer,” Science, vol. 266, no. 5193, pp. 2011–2015, 1994. View at Google Scholar · View at Scopus
  64. J. M. Dwyer and J. P. Liu, “Ets2 transcription factor, telomerase activity and breast cancer,” Clinical and Experimental Pharmacology and Physiology, vol. 37, no. 1, pp. 83–87, 2010. View at Publisher · View at Google Scholar · View at Scopus
  65. C. Poremba, B. Heine, R. Diallo et al., “Telomerase as a prognostic marker in breast cancer: high-throughput tissue microarray analysis of hTERT and hTR,” Journal of Pathology, vol. 198, no. 2, pp. 181–189, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. Y. L. Su, H. C. Sang, and B. P. Won, “Korean mistletoe lectin-induced apoptosis in hepatocarcinoma cells is associated with inhibition of telomerase via mitochondrial controlled pathway independent of p53,” Archives of Pharmacal Research, vol. 25, no. 1, pp. 93–101, 2002. View at Google Scholar · View at Scopus
  67. Z. N. Ji, W. C. Ye, G. Q. Liu, and Y. Huang, “Inhibition of telomerase activity and bcl-2 expression in berbamine-induced apoptosis in HL-60 cells,” Planta Medica, vol. 68, no. 7, pp. 596–600, 2002. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Wang, X. Liu, W. Jiang, and L. Liang, “Telomerase activity and expression of the telomerase catalytic subunit gene in non-small cell lung cancer: correlation with decreased apoptosis and clinical prognosis,” Chinese Medical Journal, vol. 113, no. 11, pp. 985–990, 2000. View at Google Scholar · View at Scopus
  69. C. V. Dang, “c-Myc target genes involved in cell growth, apoptosis, and metabolism,” Molecular and Cellular Biology, vol. 19, no. 1, pp. 1–11, 1999. View at Google Scholar · View at Scopus
  70. H. Hermeking, “The MYC oncogene as a cancer drug target,” Current Cancer Drug Targets, vol. 3, no. 3, pp. 163–175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  71. D. Ruggero, “The role of Myc-induced protein synthesis in cancer,” Cancer Research, vol. 69, no. 23, pp. 8839–8843, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. N. E. Hynes and T. Stoelzle, “Key signalling nodes in mammary gland development and cancer: Myc,” Breast Cancer Research, vol. 11, no. 5, article 210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. J. Wang, L. Y. Xie, S. Allan, D. Beach, and G. J. Hannon, “Myc activates telomerase,” Genes and Development, vol. 12, no. 12, pp. 1769–1774, 1998. View at Google Scholar · View at Scopus
  74. K. J. Wu, C. Grandori, M. Amacker et al., “Direct activation of TERT transcription by c-MYC,” Nature Genetics, vol. 21, no. 2, pp. 220–224, 1999. View at Publisher · View at Google Scholar · View at Scopus
  75. A. Latil, D. Vidaud, A. Valéri et al., “htert Expression correlates with myc over-expression in human prostate cancer,” International Journal of Cancer, vol. 86, no. 3, pp. 172–176, 2000. View at Google Scholar · View at Scopus
  76. W. Tuntiwechapikul, T. Taka, C. Songsomboon et al., “Ginger extract inhibits human telomerase reverse transcriptase and c-Myc expression in A549 lung cancer cells,” Journal of Medicinal Food, vol. 13, no. 6, pp. 1347–1354, 2010. View at Google Scholar · View at Scopus
  77. J. W. Shay and W. N. Keith, “Targeting telomerase for cancer therapeutics,” British Journal of Cancer, vol. 98, no. 4, pp. 677–683, 2008. View at Publisher · View at Google Scholar · View at Scopus