Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 627602, 9 pages
http://dx.doi.org/10.1155/2012/627602
Methodology Report

High-Resolution Whole-Mount In Situ Hybridization Using Quantum Dot Nanocrystals

Department of Biological Sciences, University of Cyprus, 1678 Nicosia, Cyprus

Received 30 August 2011; Revised 29 September 2011; Accepted 3 October 2011

Academic Editor: P. Bryant Chase

Copyright © 2012 Andriani Ioannou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. R. Altmann et al., “The latent-TGFß-binding-protein-1 (LTBP-1) is expressed in the organizer and regulates nodal and activin signaling,” Developmental Biology, vol. 248, no. 1, pp. 118–127, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. D. M. Hougaard, H. Hansen, and L. I. Larsson, “Non-radioactive in situ hybridization for mRNA with emphasis on the use of oligodeoxynucleotide probes,” Histochemistry and Cell Biology, vol. 108, no. 4-5, pp. 335–344, 1997. View at Publisher · View at Google Scholar · View at Scopus
  3. M. L. Pardue and J. G. Gall, “Molecular hybridization of radioactive DNA to the DNA of cytological preparations,” Proceedings of the National Academy of Sciences of the United States of America, vol. 64, no. 2, pp. 600–604, 1969. View at Google Scholar · View at Scopus
  4. D. Tautz and C. Pheifle, “A non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchback,” Chromosoma, vol. 98, no. 2, pp. 81–85, 1989. View at Google Scholar · View at Scopus
  5. A. Hemmati-Brivanlou, D. Frank, M. E. Bolce, B. D. Brown, H. L. Sive, and R. M. Harland, “Localization of specific mRNAs in Xenopus embryos by whole-mount in situ hybridization,” Development, vol. 110, no. 2, pp. 325–330, 1990. View at Google Scholar · View at Scopus
  6. L. L. Coutinho, J. Morris, and R. Ivarie, “Whole mount in situ detection of low abundance transcripts of the myogenic factor qmf1 and myosin heavy chain protein in quail embryos,” BioTechniques, vol. 13, no. 5, pp. 722–724, 1992. View at Google Scholar · View at Scopus
  7. R. Escalante and W. F. Loomis, “Whole-mount in situ hybridization of cell-type-specific mRNAs in Dictyostelium,” Developmental Biology, vol. 171, no. 1, pp. 262–266, 1995. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Jowett and Y. L. Yan, “Double fluorescent in situ hybridization to zebrafish embryos,” Trends in Genetics, vol. 12, no. 10, pp. 387–389, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. G. W. Dewald, S. R. Brockman, and S. F. Paternoster, “Molecular cytogenetic studies for hematological malignancies,” Cancer Treatment and Research, vol. 121, pp. 69–112, 2004. View at Google Scholar · View at Scopus
  10. S. M. Jalal and M. E. Law, “Application of multicolor fluorescent in situ hybridization for enhanced characterization of chromosomal abnormalities in congenital disorders,” Mayo Clinic Proceedings, vol. 76, no. 1, pp. 16–21, 2001. View at Google Scholar · View at Scopus
  11. J. W. Vaandrager, E. Schuuring, E. Zwikstra et al., “Direct visualization of dispersed 11q13 chromosomal translocations in mantle cell lymphoma by multicolor DNA fiber fluorescence in situ hybridization,” Blood, vol. 88, no. 4, pp. 1177–1182, 1996. View at Google Scholar · View at Scopus
  12. J. M. Levsky and R. H. Singer, “Fluorescence in situ hybridization: past, present and future,” Journal of Cell Science, vol. 116, no. 14, pp. 2833–2838, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. C. M. Ogilvie, “Prenatal diagnosis for chromosome abnormalities: past, present and future,” Pathologie Biologie, vol. 51, no. 3, pp. 156–160, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Yver, D. Carles, B. Bloch, P. Bioulac-Sage, and M. L. M. Negrier, “Determination of DNA ploidy by fluorescence in situ hybridization (FISH) in hydatidiform moles: evaluation of FISH on isolated nuclei,” Human Pathology, vol. 35, no. 6, pp. 752–758, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. P. Raanani and I. Ben-Bassat, “Detection of minimal residual disease in acute myelogenous leukemia,” Acta Haematologica, vol. 112, no. 1-2, pp. 40–54, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Gellrich, R. Ventura, M. Jones, S. Y. Tan, and D. Y. Mason, “Immunofluorescent and FISH analysis of skin biopsies,” American Journal of Dermatopathology, vol. 26, no. 3, pp. 242–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. J. W. O'Neill and E. Bier, “Double-label in situ hybridization using biotin and digoxigenin-tagged RNA probes,” BioTechniques, vol. 17, no. 5, pp. 870–875, 1994. View at Google Scholar · View at Scopus
  18. S. C. Hughes and H. M. Krause, “Double labeling with fluorescence in situ hybridization in Drosophila whole-mount embryos,” BioTechniques, vol. 24, no. 4, pp. 530–532, 1998. View at Google Scholar · View at Scopus
  19. A. Streit and C. D. Stern, “Combined whole-mount in situ hybridization and immunohistochemistry in avian embryos,” Methods, vol. 23, no. 4, pp. 339–344, 2001. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Denkers et al., “FISHing for chick genes: triple-label whole-mount fluorescence in situ hybridization detects simultaneous and overlapping gene expression in avian embryos,” Developmental Dynamics, vol. 229, no. 3, pp. 651–657, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Kosman, C. M. Mizutani, D. Lemons, W. G. Cox, W. McGinnis, and E. Bier, “Multiplex detection of RNA expression in Drosophila embryos,” Science, vol. 305, no. 5685, p. 846, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. L. A. Davidson and R. E. Keller, “Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension,” Development, vol. 126, no. 20, pp. 4547–4556, 1999. View at Google Scholar · View at Scopus
  23. R. Krieg and K. J. Halbhuber, “Recent advances in catalytic peroxidase histochemistry,” Cellular and Molecular Biology, vol. 49, no. 4, pp. 547–563, 2003. View at Google Scholar · View at Scopus
  24. M. P. C. Van De Corput, R. W. Dirks, R. P. M. Van Gijlswijk, F. M. Van De Rijke, and A. K. Raap, “Flourescence in situ hybridization using horseradish peroxidase-labeled oligodeoxynucleotides and tyramide signal amplification for sensitive DNA and mRNA detection,” Histochemistry and Cell Biology, vol. 110, no. 4, pp. 431–437, 1998. View at Publisher · View at Google Scholar · View at Scopus
  25. C. Sardet, H. Nishida, F. Prodon, and K. Sawada, “Maternal mRNAs of PEM and macho 1, the ascidian muscle determinant, associate and move with a rough endoplasmic reticulum network in the egg cortex,” Development, vol. 130, no. 23, pp. 5839–5849, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. A. J. Wilson, A. Velcich, D. Arango et al., “Novel detection and differential utilization of a c-myc transcriptional block in colon cancer chemoprevention,” Cancer Research, vol. 62, no. 21, pp. 6006–6010, 2002. View at Google Scholar · View at Scopus
  27. A. M. Femino, K. Fogarty, L. M. Lifshitz, W. Carrington, and R. H. Singer, “Visualization of single molecules of mRNA in situ,” Methods in Enzymology, vol. 361, pp. 245–304, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. E. Åkerman, W. C. W. Chan, P. Laakkonen, S. N. Bhatia, and E. Ruoslahti, “Nanocrystal targeting in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 20, pp. 12617–12621, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. B. Ballou, B. C. Lagerholm, L. A. Ernst, M. P. Bruchez, and A. S. Waggoner, “Noninvasive imaging of quantum dots in mice,” Bioconjugate Chemistry, vol. 15, no. 1, pp. 79–86, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Charalambous, M. Andreou, and P. Skourides, “Intein-mediated site-specific conjugation of Quantum Dots to proteins in vivo,” Journal of Nanobiotechnology, vol. 7, no. 9, pp. 1–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. M. C. Demetriou et al., “Spatially and temporally regulated alpha6 integrin cleavage during Xenopus laevis development,” Biochemical and Biophysical Research Communications, vol. 15, no. 366, pp. 779–785, 2007. View at Google Scholar
  32. B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou, and A. Libchaber, “In vivo imaging of quantum dots encapsulated in phospholipid micelles,” Science, vol. 298, no. 5599, pp. 1759–1762, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. X. Gao, W. C. W. Chan, and S. Nie, “Quantum-dot nanocrystals for ultrasensitive biological labeling and multicolor optical encoding,” Journal of Biomedical Optics, vol. 7, no. 4, pp. 532–537, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. X. Gao and S. Nie, “Molecular profiling of single cells and tissue specimens with quantum dots,” Trends in Biotechnology, vol. 21, no. 9, pp. 371–373, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nature Biotechnology, vol. 19, no. 7, pp. 631–635, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, vol. 21, no. 1, pp. 47–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  37. Z. Kaul, T. Yaguchi, S. C. Kaul, T. Hirano, R. Wadhwa, and K. Taira, “Mortalin imaging in normal and cancer cells with quantum dot immunoconjugates,” Cell Research, vol. 13, no. 6, pp. 503–507, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Kim, Y. T. Lim, E. G. Soltesz et al., “Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping,” Nature Biotechnology, vol. 22, no. 1, pp. 93–97, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. E. Muro, P. Vermeulen, A. Ioannou et al., “Single-shot optical sectioning using two-color probes in HiLo fluorescence microscopy,” Biophysical Journal, vol. 100, no. 11, pp. 2810–2819, 2011. View at Publisher · View at Google Scholar
  40. A. M. Smith, X. Gao, and S. Nie, “Quantum dot nanocrystals for in vivo molecular and cellular imaging,” Photochemistry and Photobiology, vol. 80, no. 3, pp. 377–385, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. P. Stylianou and P. Skourides, “Imaging morphogenesis, in Xenopus with Quantum Dot nanocrystals,” Mechanisms of Development, vol. 126, no. 10, pp. 828–841, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. X. Wu, H. Liu, J. Liu et al., “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, vol. 21, no. 1, pp. 41–46, 2003. View at Publisher · View at Google Scholar · View at Scopus
  43. E. Tholouli, J. A. Hoyland, D. Di Vizio et al., “Imaging of multiple mRNA targets using quantum dot based in situ hybridization and spectral deconvolution in clinical biopsies,” Biochemical and Biophysical Research Communications, vol. 348, no. 2, pp. 628–636, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science, vol. 281, no. 5385, pp. 2013–2016, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. W. C. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science, vol. 281, no. 5385, pp. 2016–2018, 1998. View at Publisher · View at Google Scholar · View at Scopus
  46. M. Dahan, T. Laurence, F. Pinaud et al., “Time-gated biological imaging by use of colloidal quantum dots,” Optics Letters, vol. 26, no. 11, pp. 825–827, 2001. View at Google Scholar · View at Scopus
  47. J. K. Jaiswal and S. M. Simon, “Potentials and pitfalls of fluorescent quantum dots for biological imaging,” Trends in Cell Biology, vol. 14, no. 9, pp. 497–504, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. B. O. Dabbousi, J. Rodriguez-Viejo, F. V. Mikulec et al., “(CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites,” Journal of Physical Chemistry B, vol. 101, no. 46, pp. 9463–9475, 1997. View at Google Scholar · View at Scopus
  49. P. Chan, T. Yuen, F. Ruf, J. Gonzalez-Maeso, and S. C. Sealfon, “Method for multiplex cellular detection of mRNAs using quantum dot fluorescent in situ hybridization,” Nucleic Acids Research, vol. 33, no. 18, p. e161, 2005. View at Google Scholar · View at Scopus
  50. S. Pathak, S. K. Choi, N. Arnheim, and M. E. Thompson, “Hydroxylated quantum dots as luminescent probes for in situ hybridization,” Journal of the American Chemical Society, vol. 123, no. 17, pp. 4103–4104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Watson, X. Wu, and M. Bruchez, “Lighting up cells with quantum dots,” BioTechniques, vol. 34, no. 2, pp. 296–303, 2003. View at Google Scholar · View at Scopus
  52. Y. Xiao and P. E. Barker, “Semiconductor nanocrystal probes for human metaphase chromosomes,” Nucleic Acids Research, vol. 32, no. 3, p. e28, 2004. View at Google Scholar · View at Scopus
  53. Z. Jiang, R. Li, N. W. Todd, S. A. Stass, and F. Jiang, “Detecting genomic aberrations by fluorescence in situ hybridization with quantum dots-labeled probes,” Journal of Nanoscience and Nanotechnology, vol. 7, no. 12, pp. 4254–4259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  54. F. Müller, A. Houben, P. E. Barker et al., “Quantum dots—a versatile tool in plant science?” Journal of Nanobiotechnology, vol. 4, p. 5, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. Ioannou, H. G. Tempest, B. M. Skinner, A. R. Thornhill, M. Ellis, and D. K. Griffin, “Quantum dots as new-generation fluorochromes for FISH: an appraisal,” Chromosome Research, vol. 17, no. 4, pp. 519–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  56. R. Winklbauer, “Mesodermal cell migration during Xenopus gastrulation,” Developmental Biology, vol. 142, no. 1, pp. 155–168, 1990. View at Google Scholar · View at Scopus
  57. P. D. Nieuwkoop and J. Faber, Normal Table of Xenopus laevis (Daudin), Garland, New York, USA, 1 edition, 1994.
  58. R. M. Harland, “In situ hybridization: an improved whole-mount method for Xenopus embryos,” Methods in Cell Biology, vol. 36, pp. 685–695, 1991. View at Google Scholar · View at Scopus
  59. C. Forristall, M. Pondel, L. Chen, and M. L. King, “Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2,” Development, vol. 121, no. 1, pp. 201–208, 1995. View at Google Scholar · View at Scopus
  60. D. St Johnston, “The intracellular localization of messenger RNAs,” Cell, vol. 81, no. 2, pp. 161–170, 1995. View at Google Scholar · View at Scopus
  61. C. Fages, M. Kaksonen, T. Kinnunen, E. L. Punnonen, and H. Rauvala, “Regulation of mRNA localization by transmembrane signalling: local interaction of HB-GAM (heparin-binding growth-associated molecule) with the cell surface localizes β-actin mRNA,” Journal of Cell Science, vol. 111, no. 20, pp. 3073–3080, 1998. View at Google Scholar · View at Scopus
  62. K. Yaniv and J. K. Yisraeli, “Defining Cis-acting elements and trans-acting factors in RNA localization,” International Review of Cytology, vol. 203, pp. 521–539, 2001. View at Google Scholar · View at Scopus
  63. I. M. Palacios and D. St. Johnston, “Getting the message across: the intracellular localization of mRNAs in higher eukaryotes,” Annual Review of Cell and Developmental Biology, vol. 17, pp. 569–614, 2001. View at Publisher · View at Google Scholar · View at Scopus
  64. G. Seydoux and A. Fire, “Whole-mount in situ hybridization for the detection of RNA in Caenorhabditis elegans embryos,” Methods in Cell Biology, vol. 48, pp. 323–337, 1995. View at Publisher · View at Google Scholar · View at Scopus