Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 732191, 14 pages
http://dx.doi.org/10.1155/2012/732191
Review Article

Soluble Host Defense Lectins in Innate Immunity to Influenza Virus

1Department of Microbiology and Immunology, The University of Melbourne, Parkville, VIC 3010, Australia
2Centre for Innate Immunity and Infectious Disease, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
3WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, North Melbourne, VIC 3051, Australia

Received 20 December 2011; Accepted 21 February 2012

Academic Editor: Nobutaka Wakamiya

Copyright © 2012 Wy Ching Ng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. H. Barker and J. P. Mullooly, “Pneumonia and influenza deaths during epidemics. Implications for prevention,” Archives of Internal Medicine, vol. 142, no. 1, pp. 85–89, 1982. View at Publisher · View at Google Scholar · View at Scopus
  2. P. F. Wright, G. Neumann, and Y. Kawaoka, “Orthomyxoviruses,” in Fields Virology, vol. 2, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2007. View at Google Scholar
  3. R. A. M. Fouchier, V. Munster, A. Wallensten et al., “Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls,” Journal of Virology, vol. 79, no. 5, pp. 2814–2822, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. B. R. Murphy and R. G. Webster, “Orthomyxoviruses,” in Fields Virology, Lippincott-Raven, Philadelphia, Pa, USA, 1996. View at Google Scholar
  5. J. J. Skehel and D. C. Wiley, “Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin,” Annual Review of Biochemistry, vol. 69, pp. 531–569, 2000. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Gong, W. Xu, and J. Zhang, “Structure and functions of influenza virus neuraminidase,” Current Medicinal Chemistry, vol. 14, no. 1, pp. 113–122, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. Mitnaul, M. N. Matrosovich, M. R. Castrucci et al., “Balanced hemagglutinin and neuraminidase activities are critical for efficient replication of influenza A virus,” Journal of Virology, vol. 74, no. 13, pp. 6015–6020, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. R. Wagner, M. Matrosovich, and H. D. Klenk, “Functional balance between haemagglutinin and neuraminidase in influenza virus infections,” Reviews in Medical Virology, vol. 12, no. 3, pp. 159–166, 2002. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Basak, D. G. Pritchard, A. S. Brown, and R. W. Compans, “Glycosylation sites of influenza viral glycoproteins: characterization of tryptic glycopeptides from the A/USSR(H1N1) hemagglutinin glycoprotein,” Journal of Virology, vol. 37, no. 2, pp. 549–558, 1981. View at Google Scholar · View at Scopus
  10. C. W. Ward and T. A. Dopheide, “Amino acid sequence and oligosaccharide distribution of the haemagglutinin from an early Hong Kong influenza virus variant A/Aichi/2/68 (X-31),” Biochemical Journal, vol. 193, no. 3, pp. 953–962, 1981. View at Google Scholar · View at Scopus
  11. B. Imperiali and T. L. Hendrickson, “Asparagine-linked glycosylation: specificity and function of oligosaccharyl transferase,” Bioorganic and Medicinal Chemistry, vol. 3, no. 12, pp. 1565–1578, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. R. Kornfeld and S. Kornfeld, “Assembly of asparagine-linked oligosaccharides,” Annual Review of Biochemistry, vol. 54, pp. 631–664, 1985. View at Google Scholar · View at Scopus
  13. S. Basak, M. Tomana, and R. W. Compans, “Sialic acid is incorporated into influenza hemagglutinin glycoproteins in the absence of viral neuraminidase,” Virus Research, vol. 2, no. 1, pp. 61–68, 1985. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Nakamura and R. W. Compans, “Host cell- and virus strain-dependent differences in oligosaccharides of hemagglutinin glycoproteins of influenza A viruses,” Virology, vol. 95, no. 1, pp. 8–23, 1979. View at Google Scholar · View at Scopus
  15. Y. Abe, E. Takashita, K. Sugawara, Y. Matsuzaki, Y. Muraki, and S. Hongo, “Effect of the addition of oligosaccharides on the biological activities and antigenicity of influenza A/H3N2 virus hemagglutinin,” Journal of Virology, vol. 78, no. 18, pp. 9605–9611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. J. J. Skehel, D. J. Stevens, and R. S. Daniels, “A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody,” Proceedings of the National Academy of Sciences of the United States of America, vol. 81, no. 6, pp. 1779–1783, 1984. View at Google Scholar · View at Scopus
  17. C. J. Wei, J. C. Boyington, K. Dai et al., “Cross-neutralization of 1918 and 2009 influenza viruses: role of glycans in viral evolution and vaccine design,” Science Translational Medicine, vol. 2, no. 24, p. 24ra21, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Sun, Q. Wang, F. Zhao, W. Chen, and Z. Li, “Glycosylation site alteration in the evolution of influenza a (H1N1) viruses,” PLoS One, vol. 6, no. 7, Article ID e22844, 2011. View at Publisher · View at Google Scholar
  19. M. Zhang, B. Gaschen, W. Blay et al., “Tracking global patterns of N-linked glycosylation site variation in highly variable viral glycoproteins: HIV, SIV, and HCV envelopes and influenza hemagglutinin,” Glycobiology, vol. 14, no. 12, pp. 1229–1246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Drickamer, “Two distinct classes of carbohydrate-recognition domains in animal lectins,” Journal of Biological Chemistry, vol. 263, no. 20, pp. 9557–9560, 1988. View at Google Scholar · View at Scopus
  21. K. Drickamer and M. E. Taylor, “Biology of animal lectins,” Annual Review of Cell Biology, vol. 9, pp. 237–264, 1993. View at Google Scholar · View at Scopus
  22. K. Drickamer, “C-type lectin-like domains,” Current Opinion in Structural Biology, vol. 9, no. 5, pp. 585–590, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. E. J.A. Veldhuizen, M. Van Eijk, and H. P. Haagsman, “The carbohydrate recognition domain of collectins,” FEBS Journal, vol. 278, no. 20, pp. 3930–3941, 2011. View at Publisher · View at Google Scholar
  24. S. L. Londrigan, S. G. Turville, M. D. Tate, Y.-M. Deng, A. G. Brooks, and P. C. Reading, “N-linked glycosylation facilitates sialic acid-independent attachment and entry of influenza A viruses into cells expressing DC-SIGN or L-SIGN,” Journal of Virology, vol. 85, no. 6, pp. 2990–3000, 2011. View at Publisher · View at Google Scholar
  25. J. P. Upham, D. Pickett, T. Irimura, E. M. Anders, and P. C. Reading, “Macrophage receptors for influenza a virus: role of the macrophage galactose-type lectin and mannose receptor in viral entry,” Journal of Virology, vol. 84, no. 8, pp. 3730–3737, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. A. Rabinovich, F. T. Liu, M. Hirashima, and A. Anderson, “An emerging role for galectins in tuning the immune response: lessons from experimental models of inflammatory disease, autoimmunity and cancer,” Scandinavian Journal of Immunology, vol. 66, no. 2-3, pp. 143–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Y. Yang, G. A. Rabinovich, and F. T. Liu, “Galectins: structure, function and therapeutic potential,” Expert Reviews in Molecular Medicine, vol. 10, no. 17, article e17, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. M.-L. Yang, Y.-H. Chen, S.-W. Wang et al., “Galectin-1 binds to influenza virus and ameliorates influenza virus pathogenesis,” Journal of Virology, vol. 85, no. 19, pp. 10010–10020, 2011. View at Publisher · View at Google Scholar
  29. A. Mantovani, C. Garlanda, A. Doni, and B. Bottazzi, “Pentraxins in innate immunity: from C-reactive protein to the long pentraxin PTX3,” Journal of Clinical Immunology, vol. 28, no. 1, pp. 1–13, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Inforzato, B. Bottazzi, C. Garlanda, S. Valentino, and A. Mantovani, “Pentraxins in humoral innate immunity,” Advances in Experimental Medicine and Biology, vol. 946, pp. 1–20, 2012. View at Publisher · View at Google Scholar
  31. C. R. K. Hind, P. M. Collins, and D. Renn, “Binding specificity of serum amyloid P component for the pyruvate acetal of galactose,” Journal of Experimental Medicine, vol. 159, no. 4, pp. 1058–1069, 1984. View at Google Scholar · View at Scopus
  32. O. Andersen, K. V. Ravn, I. J. Sørensen, G. Jonson, E. Holm Nielsen, and S.-E. Svehag, “Serum amyloid P component binds to influenza A virus haemagglutinin and inhibits the virus infection in vitro,” Scandinavian Journal of Immunology, vol. 46, no. 4, pp. 331–337, 1997. View at Google Scholar
  33. A. Horváth, I. Andersen, K. Junker et al., “Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies,” Antiviral Research, vol. 52, no. 1, pp. 43–53, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. B. A. Seaton, E. C. Crouch, F. X. McCormack, J. F. Head, K. L. Hartshorn, and R. Mendelsohn, “Structural determinants of pattern recognition by lung collectins,” Innate Immunity, vol. 16, no. 3, pp. 143–150, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Gupta and A. Surolia, “Collectins: sentinels of innate immunity,” BioEssays, vol. 29, no. 5, pp. 452–464, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. K. Van De Wetering, L. M. G. Van Golde, and J. J. Batenburg, “Collectins: players of the innate immune system,” European Journal of Biochemistry, vol. 271, no. 7, pp. 1229–1249, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Gottschalk, G. Belyavin, and F. Biddle, “Glycoproteins as influenza virus haemagglutinin inhibitors and as cellular virus receptors,” in Glycoproteins Their Composition, Structure and Function, Elsevier, New York, NY, USA, 1972. View at Google Scholar
  38. E. M. Anders, C. A. Hartley, and D. C. Jackson, “Bovine and mouse serum β inhibitors of influenza A viruses are mannose-binding lectins,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 12, pp. 4485–4489, 1990. View at Publisher · View at Google Scholar · View at Scopus
  39. C. A. Hartley, D. C. Jackson, and E. M. Anders, “Two distinct serum mannose-binding lectins function as β inhibitors of influenza virus: identification of bovine serum β inhibitor as conglutinin,” Journal of Virology, vol. 66, no. 7, pp. 4358–4363, 1992. View at Google Scholar · View at Scopus
  40. K. Hanaoka, T. J. Pritchett, S. Takasaki et al., “4-O-Acetyl-N-acetylneuraminic acid in the N-linked carbohydrate structures of equine and guinea pig α2-macroglobulins, potent inhibitors of influenza virus infection,” Journal of Biological Chemistry, vol. 264, no. 17, pp. 9842–9849, 1989. View at Google Scholar · View at Scopus
  41. T. J. Pritchett and J. C. Paulson, “Basis for the potent inhibition of influenza virus infection by equine and guinea pig α2-macroglobulin,” Journal of Biological Chemistry, vol. 264, no. 17, pp. 9850–9858, 1989. View at Google Scholar · View at Scopus
  42. K. L. Hartshorn, E. C. Crouch, M. R. White et al., “Evidence for a protective role of pulmonary surfactant protein D (SP-D) against influenza A viruses,” Journal of Clinical Investigation, vol. 94, no. 1, pp. 311–319, 1994. View at Google Scholar · View at Scopus
  43. K. L. Hartshorn, K. N. Sastry, D. Chang, M. R. White, and E. C. Crouch, “Enhanced anti-influenza activity of a surfactant protein D and serum conglutinin fusion protein,” American Journal of Physiology, vol. 278, no. 1, pp. L90–L98, 2000. View at Google Scholar · View at Scopus
  44. P. C. Reading, L. S. Morey, E. C. Crouch, and E. M. Anders, “Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice,” Journal of Virology, vol. 71, no. 11, pp. 8204–8212, 1997. View at Google Scholar · View at Scopus
  45. C. A. Benne, C. A. Kraaijeveld, J. A. G. Van Strijp et al., “Interactions of surfactant protein A with influenza A viruses: binding and neutralization,” Journal of Infectious Diseases, vol. 171, no. 2, pp. 335–341, 1995. View at Google Scholar · View at Scopus
  46. A. N. Mikerov, M. White, K. Hartshorn, G. Wang, and J. Floros, “Inhibition of hemagglutination activity of influenza a viruses by SP-A1 and SP-A2 variants expressed in CHO cells,” Medical Microbiology and Immunology, vol. 197, no. 1, pp. 9–12, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. S. Hawgood, C. Brown, J. Edmondson et al., “Pulmonary collectins modulate strain-specific influenza A virus infection and host responses,” Journal of Virology, vol. 78, no. 16, pp. 8565–8572, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. A. M. LeVine, J. A. Whitsett, K. L. Hartshorn, E. C. Crouch, and T. R. Korfhagen, “Surfactant protein D enhances clearance of influenza A virus from the lung in vivo,” Journal of Immunology, vol. 167, no. 10, pp. 5868–5873, 2001. View at Google Scholar · View at Scopus
  49. M. D. Tate, A. G. Brooks, and P. C. Reading, “Inhibition of lectin-mediated innate host defences in vivo modulates disease severity during influenza virus infection,” Immunology and Cell Biology, vol. 89, no. 3, pp. 482–491, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. D. J. Vigerust, K. B. Ulett, K. L. Boyd, J. Madsen, S. Hawgood, and J. A. McCullers, “N-linked glycosylation attenuates H3N2 influenza viruses,” Journal of Virology, vol. 81, no. 16, pp. 8593–8600, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. K. L. Hartshorn, M. R. White, T. Mogues, T. Ligtenberg, E. Crouch, and U. Holmskov, “Lung and salivary scavenger receptor glycoprotein-340 contribute to the host defense against influenza A viruses,” American Journal of Physiology, vol. 285, no. 5, pp. L1066–L1076, 2003. View at Google Scholar · View at Scopus
  52. K. L. Hartshorn, E. Crouch, M. R. White et al., “Pulmonary surfactant proteins A and D enhance neutrophil uptake of bacteria,” American Journal of Physiology, vol. 274, no. 6, pp. L958–L969, 1998. View at Google Scholar · View at Scopus
  53. E. Crouch, A. Persson, D. Chang, and J. Heuser, “Molecular structure of pulmonary surfactant protein D (SP-D),” Journal of Biological Chemistry, vol. 269, no. 25, pp. 17311–17319, 1994. View at Google Scholar · View at Scopus
  54. E. C. Crouch, K. Smith, B. McDonald et al., “Species differences in the carbohydrate binding preferences of surfactant protein D,” American Journal of Respiratory Cell and Molecular Biology, vol. 35, no. 1, pp. 84–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Tecle, M. R. White, G. Sorensen et al., “Critical role for cross-linking of trimeric lectin domains of surfactant protein D in antiviral activity against influenza A virus,” Biochemical Journal, vol. 412, no. 2, pp. 323–329, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. K. L. Hartshorn, M. R. White, T. Tecle et al., “Reduced influenza viral neutralizing activity of natural human trimers of surfactant protein D,” Respiratory Research, vol. 8, article 9, 2007. View at Publisher · View at Google Scholar
  57. M. White, P. Kingma, T. Tecle et al., “Multimerization of surfactant protein D, but not its collagen domain, is required for antiviral and opsonic activities related to influenza virus,” Journal of Immunology, vol. 181, no. 11, pp. 7936–7943, 2008. View at Google Scholar · View at Scopus
  58. K. L. Hartshorn, R. Webby, M. R. White et al., “Role of viral hemagglutinin glycosylation in anti-influenza activities of recombinant surfactant protein D,” Respiratory research, vol. 9, article 65, 2008. View at Google Scholar · View at Scopus
  59. K. L. Hartshorn, M. R. White, D. R. Voelker, J. Coburn, K. Zaner, and E. C. Crouch, “Mechanism of binding of surfactant protein D to influenza A viruses: importance of binding to haemagglutinin to antiviral activity,” Biochemical Journal, vol. 351, no. 2, pp. 449–458, 2000. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Tecle, M. R. White, E. C. Crouch, and K. L. Hartshorn, “Inhibition of influenza viral neuraminidase activity by collectins,” Archives of Virology, vol. 152, no. 9, pp. 1731–1742, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. K. L. Hartshorn, K. B. M. Reid, M. R. White et al., “Neutrophil deactivation by influenza A viruses: mechanisms of protection after viral opsonization with collectins and hemagglutination-inhibiting antibodies,” Blood, vol. 87, no. 8, pp. 3450–3461, 1996. View at Google Scholar · View at Scopus
  62. T. O. Hirche, E. C. Crouch, M. Espinola et al., “Neutrophil serine proteinases inactivate surfactant protein D by cleaving within a conserved subregion of the carbohydrate recognition domain,” Journal of Biological Chemistry, vol. 279, no. 26, pp. 27688–27698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  63. M. R. White, T. Tecle, E. C. Crouch, and K. L. Hartshorn, “Impact of neutrophils on antiviral activity of human bronchoalveolar lavage fluid,” American Journal of Physiology, vol. 293, no. 5, pp. L1293–L1299, 2007. View at Publisher · View at Google Scholar · View at Scopus
  64. R. Leth-Larsen, P. Garred, H. Jensenius et al., “A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D,” Journal of Immunology, vol. 174, no. 3, pp. 1532–1538, 2005. View at Google Scholar · View at Scopus
  65. M. D. Tate, E. R. Job, A. G. Brooks, and P. C. Reading, “Glycosylation of the hemagglutinin modulates the sensitivity of H3N2 influenza viruses to innate proteins in airway secretions and virulence in mice,” Virology, vol. 413, no. 1, pp. 84–92, 2011. View at Publisher · View at Google Scholar
  66. M. D. Tate, A. G. Brooks, and P. C. Reading, “Specific sites of N-linked glycosylation on the hemagglutinin of H1N1 subtype influenza A virus determine sensitivity to inhibitors of the innate immune system and virulence in mice,” Journal of Immunology, vol. 187, no. 4, pp. 1884–1894, 2011. View at Publisher · View at Google Scholar
  67. M. Ikegami, C. L. Na, T. R. Korfhagen, and J. A. Whitsett, “Surfactant protein D influences surfactant ultrastructure and uptake by alveolar type II cells,” American Journal of Physiology, vol. 288, no. 3, pp. L552–L561, 2005. View at Publisher · View at Google Scholar · View at Scopus
  68. M. Ikegami, J. A. Whitsett, A. Jobe, G. Ross, J. Fisher, and T. Korfhagen, “Surfactant metabolism in SP-D gene-targeted mice,” American Journal of Physiology, vol. 279, no. 3, pp. L468–L476, 2000. View at Google Scholar · View at Scopus
  69. T. R. Korfhagen, V. Sheftelyevich, M. S. Burhans et al., “Surfactant protein-D regulates surfactant phospholipid homeostasis in vivo,” Journal of Biological Chemistry, vol. 273, no. 43, pp. 28438–28443, 1998. View at Publisher · View at Google Scholar · View at Scopus
  70. P. S. Kingma, L. Zhang, M. Ikegami, K. Hartshorn, F. X. McCormack, and J. A. Whitsett, “Correction of pulmonary abnormalities in Sftpd-/- mice requires the collagenous domain of surfactant protein D,” Journal of Biological Chemistry, vol. 281, no. 34, pp. 24496–24505, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. L. Zhang, M. Ikegami, T. R. Korfhagen et al., “Neither SP-A nor NH2-terminal domains of SP-A can substitute for SP-D in regulation of alveolar homeostasis,” American Journal of Physiology, vol. 291, no. 2, pp. L181–L190, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. P. C. Reading, J. Allison, E. C. Crouch, and E. Margot Anders, “Increased susceptibility of diabetic mice to influenza virus infection: compromise of collectin-mediated host defense of the lung by glucose?” Journal of Virology, vol. 72, no. 8, pp. 6884–6887, 1998. View at Google Scholar · View at Scopus
  73. K. Takahashi, W. K. E. Ip, I. C. Michelow, and R. A. B. Ezekowitz, “The mannose-binding lectin: a prototypic pattern recognition molecule,” Current Opinion in Immunology, vol. 18, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. J. S. Haurum, S. Thiel, H. P. Haagsman, S. B. Laursen, B. Larsen, and J. C. Jensenius, “Studies on the carbohydrate-binding characteristics of human pulmonary surfactant-associated protein A and comparison with two other collectins: Mannan-binding protein and conglutinin,” Biochemical Journal, vol. 293, no. 3, pp. 873–878, 1993. View at Google Scholar · View at Scopus
  75. T. Fujita, M. Matsushita, and Y. Endo, “The lectin-complement pathway—its role in innate immunity and evolution,” Immunological Reviews, vol. 198, pp. 185–202, 2004. View at Publisher · View at Google Scholar · View at Scopus
  76. M. Takahashi, S. Mori, S. Shigeta, and T. Fujita, “Role of MBL-associated serine protease (MASP) on activation of the lectin complement pathway,” Advances in Experimental Medicine and Biology, vol. 598, pp. 93–104, 2007. View at Publisher · View at Google Scholar · View at Scopus
  77. A. Krarup, R. Wallis, J. S. Presanis, P. Gál, and R. B. Sim, “Simultaneous activation of complement and coagulation by MBL-associated serine protease 2,” PLoS One, vol. 2, no. 7, article no. e623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  78. J. S. Presanis, K. Hajela, G. Ambrus, P. Gál, and R. B. Sim, “Differential substrate and inhibitor profiles for human MASP-1 and MASP-2,” Molecular Immunology, vol. 40, no. 13, pp. 921–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  79. R. Sastry, J. S. Wang, D. C. Brown, R. A. Ezekowitz, A. I. Tauber, and K. N. Sastry, “Characterization of murine mannose-binding protein genes Mbl1 and Mbl2 reveals features common to other collectin genes,” Mammalian Genome, vol. 6, no. 2, pp. 103–110, 1995. View at Google Scholar · View at Scopus
  80. K. Takahashi, “Lessons learned from murine models of mannose-binding lectin deficiency,” Biochemical Society Transactions, vol. 36, no. 6, pp. 1487–1490, 2008. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Hansen, S. Thiel, A. Willis, U. Holmskov, and J. C. Jensenius, “Purification and characterization of two mannan-binding lectins from mouse serum,” Journal of Immunology, vol. 164, no. 5, pp. 2610–2618, 2000. View at Google Scholar · View at Scopus
  82. D. P. Eisen, “Mannose-binding lectin deficiency and respiratory tract infection,” Journal of Innate Immunity, vol. 2, no. 2, pp. 114–122, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. K. J. Fidler, T. N. Hilliard, A. Bush et al., “Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism,” Thorax, vol. 64, no. 2, pp. 150–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  84. W. C. Chang, M. R. White, P. Moyo et al., “Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza A virus infection,” BMC Immunology, vol. 11, article 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  85. K. L. Hartshorn, M. R. White, V. Shepherd, K. Reid, J. G. Jensenius, and E. C. Crouch, “Mechanisms of anti-influenza activity of surfactant proteins A and D: comparison with serum collectins,” American Journal of Physiology, vol. 273, no. 6, pp. L1156–L1166, 1997. View at Google Scholar · View at Scopus
  86. K. L. Hartshorn, K. Sastry, M. R. White et al., “Human mannose-binding protein functions as an opsonin for influenza A viruses,” Journal of Clinical Investigation, vol. 91, no. 4, pp. 1414–1420, 1993. View at Google Scholar · View at Scopus
  87. E. R. Job, Y. M. Deng, M. D. Tate et al., “Pandemic H1N1 influenza a viruses are resistant to the antiviral activities of innate immune proteins of the collectin and pentraxin superfamilies,” Journal of Immunology, vol. 185, no. 7, pp. 4284–4291, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Kase, Y. Suzuki, T. Kawai et al., “Human mannan-binding lectin inhibits the infection of influenza a virus without complement,” Immunology, vol. 97, no. 3, pp. 385–392, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. E. M. Anders, C. A. Hartley, P. C. Reading, and R. A. B. Ezekowitz, “Complement-dependent neutralization of influenza virus by a serum mannose-binding lectin,” Journal of General Virology, vol. 75, no. 3, pp. 615–622, 1994. View at Google Scholar · View at Scopus
  90. P. C. Reading, C. A. Hartley, R. A. B. Ezekowitz, and E. M. Anders, “A serum mannose-binding lectin mediates complement dependent lysis of influenza virus-infected cells,” Biochemical and Biophysical Research Communications, vol. 217, no. 3, pp. 1128–1136, 1995. View at Publisher · View at Google Scholar · View at Scopus
  91. R. Malhotra, J. S. Haurum, S. Thiel, and R. B. Sim, “Binding of human collectins (SP-A and MBP) to influenza virus,” Biochemical Journal, vol. 304, no. 2, pp. 455–461, 1994. View at Google Scholar · View at Scopus
  92. H. Tokunaga, H. Ushirogawa, and M. Ohuchi, “The pandemic (H1N1) 2009 influenza virus is resistant to mannose-binding lectin,” Virology Journal, vol. 8, article 50, 2011. View at Publisher · View at Google Scholar
  93. M. T. Ling, W. Tu, Y. Han et al., “Mannose-binding lectin contributes to deleterious inflammatory response in pandemic H1N1 and avian H9N2 infection,” Journal of Infectious Diseases, vol. 205, no. 1, pp. 44–53, 2012. View at Publisher · View at Google Scholar
  94. K. Ohtani, Y. Suzuki, S. Eda et al., “Molecular cloning of a novel human collectin from liver (CL-L1),” Journal of Biological Chemistry, vol. 274, no. 19, pp. 13681–13689, 1999. View at Publisher · View at Google Scholar · View at Scopus
  95. K. Ohtani, Y. Suzuki, S. Eda et al., “The membrane-type Collectin CL-P1 is a scavenger receptor on vascular endothelial cells,” Journal of Biological Chemistry, vol. 276, no. 47, pp. 44222–44228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  96. S. Hansen, L. Selman, N. Palaniyar et al., “Collectin 11 (CL-11, CL-K1) is a MASP-1/3-associated plasma collectin with microbial-binding activity,” Journal of Immunology, vol. 185, no. 10, pp. 6096–6104, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. W. Motomura, T. Yoshizaki, K. Ohtani et al., “Immunolocalization of a novel collectin CL-K1 in murine tissues,” Journal of Histochemistry and Cytochemistry, vol. 56, no. 3, pp. 243–252, 2008. View at Publisher · View at Google Scholar · View at Scopus
  98. T. Yoshizaki, K. Ohtani, W. Motomura et al., “Comparison of human blood concentrations of collectin kidney 1 and mannan-binding lectin,” Journal of Biochemistry, vol. 151, no. 1, pp. 57–64, 2012. View at Publisher · View at Google Scholar
  99. J. Bordet and F. P. Gay, “Sur les relations des sensibilisatrices avec l'alexine,” Annales de l'Institut Pasteur, vol. 20, pp. 467–498, 1906. View at Google Scholar
  100. P. J. Lachmann, “Conglutinin and Immunoconglutinins,” Advances in Immunology, vol. 6, pp. 479–527, 1967. View at Publisher · View at Google Scholar · View at Scopus
  101. P. J. Lachmann and H. J. Müller-Eberhard, “The demonstration in human serum of “conglutinogen-activating factor” and its effect on the third component of complement,” Journal of Immunology, vol. 100, no. 4, pp. 691–698, 1968. View at Google Scholar
  102. S. Hansen and U. Holmskov, “Lung surfactant protein D (SP-D) and the molecular diverted descendants: conglutinin, CL-43 and CL-46,” Immunobiology, vol. 205, no. 4-5, pp. 498–517, 2002. View at Google Scholar · View at Scopus
  103. K. L. Hartshorn, U. Holmskov, S. Hansen et al., “Distinctive anti-influenza properties of recombinant collectin 43,” Biochemical Journal, vol. 366, no. 1, pp. 87–96, 2002. View at Publisher · View at Google Scholar · View at Scopus
  104. A. B. Rothmann, H. D. Mortensen, U. Holmskov, and P. Hojrup, “Structural characterization of bovine collectin-43,” European Journal of Biochemistry, vol. 243, no. 3, pp. 630–635, 1997. View at Google Scholar · View at Scopus
  105. N. Wakamiya, Y. Okuno, F. Sasao et al., “Isolation and characterization of conglutinin as an influenza A virus inhibitor,” Biochemical and Biophysical Research Communications, vol. 187, no. 3, pp. 1270–1278, 1992. View at Publisher · View at Google Scholar
  106. S. Eda, Y. Suzuki, T. Kase et al., “Recombinant bovine conglutinin, lacking the N-terminal and collagenous domains, has less conglutination activity but is able to inhibit haemagglutination by influenza A virus,” Biochemical Journal, vol. 316, no. 1, pp. 43–48, 1996. View at Google Scholar · View at Scopus
  107. K. L. Hartshorn, K. Sastry, D. Brown et al., “Conglutinin acts as an opsonin for influenza A viruses,” Journal of Immunology, vol. 151, no. 11, pp. 6265–6273, 1993. View at Google Scholar · View at Scopus
  108. T. Kawai, T. Kase, Y. Suzuki et al., “Anti-influenza A virus activities of mannan-binding lectins and bovine conglutinin,” Journal of Veterinary Medical Science, vol. 69, no. 2, pp. 221–224, 2007. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Suzuki, S. Eda, T. Kawai et al., “Characterization of recombinant bovine conglutinin expressed in a mammalian cell,” Biochemical and Biophysical Research Communications, vol. 238, no. 3, pp. 856–860, 1997. View at Publisher · View at Google Scholar
  110. S. Eda, Y. Suzuki, T. Kawai et al., “Structure of a truncated human surfactant protein D is less effective in agglutinating bacteria than the native structure and fails to inhibit haemagglutination by influenza A virus,” Biochemical Journal, vol. 323, no. 2, pp. 393–399, 1997. View at Google Scholar · View at Scopus
  111. S. Eda, Y. Suzuki, T. Kawai et al., “Characterization of Truncated Human Mannan-Binding Protein (MBP) Expressed in Escherichia coli,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 7, pp. 1326–1331, 1998. View at Google Scholar
  112. U. Holmskov, B. Teisner, A. C. Willis, K. B. M. Reid, and J. C. Jensenius, “Purification and characterization of a bovine serum lectin (CL-43) with structural homology to conglutinin and SP-D and carbohydrate specificity similar to mannan-binding protein,” Journal of Biological Chemistry, vol. 268, no. 14, pp. 10120–10125, 1993. View at Google Scholar · View at Scopus
  113. U. Holmskov, S. B. Laursen, R. Malhotra et al., “Comparative study of the structural and functional properties of a bovine plasma C-type lectin, collectin-43, with other collectins,” Biochemical Journal, vol. 305, no. 3, pp. 889–896, 1995. View at Google Scholar · View at Scopus
  114. M. R. White, E. Crouch, D. Chang, and K. L. Hartshorn, “Increased antiviral and opsonic activity of a highly multimerized collectin chimera,” Biochemical and Biophysical Research Communications, vol. 286, no. 1, pp. 206–213, 2001. View at Publisher · View at Google Scholar
  115. K. L. Hartshorn, M. R. White, K. Smith et al., “Increasing antiviral activity of surfactant protein D trimers by introducing residues from bovine serum collectins: dissociation of mannan-binding and antiviral activity,” Scandinavian Journal of Immunology, vol. 72, no. 1, pp. 22–30, 2010. View at Publisher · View at Google Scholar
  116. K. L. Hartshorn, M. R. White, T. Tecle, G. Sorensen, U. Holmskov, and E. C. Crouch, “Viral aggregating and opsonizing activity in collectin trimers,” American Journal of Physiology, vol. 298, no. 1, pp. L79–L88, 2010. View at Publisher · View at Google Scholar · View at Scopus
  117. M. Van Eijk, M. R. White, J. J. Batenburg et al., “Interactions of influenza A virus with sialic acids present on porcine surfactant protein D,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 6, pp. 871–879, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. M. Van Eijk, M. R. White, E. C. Crouch et al., “Porcine pulmonary collectins show distinct interactions with influenza A viruses: role of the N-linked oligosaccharides in the carbohydrate recognition domain,” Journal of Immunology, vol. 171, no. 3, pp. 1431–1440, 2003. View at Google Scholar · View at Scopus
  119. M. L. B. Hillaire, M. van Eijk, S. E. van Trierum et al., “Assessment of the antiviral properties of recombinant porcine SP-D against various influenza A viruses in vitro,” PLoS One, vol. 6, no. 9, Article ID e25005, 2011. View at Publisher · View at Google Scholar
  120. I. H. Brown, “The epidemiology and evolution of influenza viruses in pigs,” Veterinary Microbiology, vol. 74, no. 1-2, pp. 29–46, 2000. View at Publisher · View at Google Scholar · View at Scopus
  121. S. B. Laursen, T. S. Dalgaard, S. Thiel et al., “Cloning and sequencing of a cDNA encoding chicken mannan-binding lectin (MBL) and comparison with mammalian analogues,” Immunology, vol. 93, no. 3, pp. 421–430, 1998. View at Publisher · View at Google Scholar · View at Scopus
  122. A. Hogenkamp, M. Van Eijk, A. Van Dijk, A. J. A. M. Van Asten, E. J. A. Veldhuizen, and H. P. Haagsman, “Characterization and expression sites of newly identified chicken collectins,” Molecular Immunology, vol. 43, no. 10, pp. 1604–1616, 2006. View at Publisher · View at Google Scholar · View at Scopus
  123. A. L. Hughes, “Evolution of the lung surfactant proteins in birds and mammals,” Immunogenetics, vol. 59, no. 7, pp. 565–572, 2007. View at Publisher · View at Google Scholar · View at Scopus
  124. A. Hogenkamp, N. Isohadouten, S. S. N. Reemers et al., “Chicken lung lectin is a functional C-type lectin and inhibits haemagglutination by influenza A virus,” Veterinary Microbiology, vol. 130, no. 1-2, pp. 37–46, 2008. View at Publisher · View at Google Scholar · View at Scopus
  125. P. C. Reading, S. Bozza, B. Gilbertson et al., “Antiviral activity of the long chain pentraxin PTX3 against influenza viruses,” Journal of Immunology, vol. 180, no. 5, pp. 3391–3398, 2008. View at Google Scholar · View at Scopus
  126. M. Igarashi, K. Ito, R. Yoshida, D. Tomabechi, H. Kida, and A. Takada, “Predicting the antigenic structure of the pandemic (H1N1) 2009 influenza virus hemagglutinin,” PLoS One, vol. 5, no. 1, Article ID e8553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  127. L. Qi, J. C. Kash, V. G. Dugan et al., “The ability of pandemic influenza virus hemagglutinins to induce lower respiratory pathology is associated with decreased surfactant protein D binding,” Virology, vol. 412, no. 2, pp. 426–434, 2011. View at Publisher · View at Google Scholar
  128. D. P. Eisen, C. Marshall, M. M. Dean et al., “No association between mannose-binding lectin deficiency and H1N1 2009 infection observed during the first season of this novel pandemic influenza virus,” Human Immunology, vol. 72, no. 11, pp. 1091–1094, 2011. View at Publisher · View at Google Scholar
  129. WHO, “Avian Influenza,” http://www.who.int/mediacentre/factsheets/avian_influenza/en/.
  130. A. Kongchanagul, O. Suptawiwat, C. Boonarkart et al., “Decreased expression of surfactant protein D mRNA in human lungs in fatal cases of H5N1 avian influenza,” Journal of Medical Virology, vol. 83, no. 8, pp. 1410–1417, 2011. View at Publisher · View at Google Scholar
  131. C. M. Cameron, M. J. Cameron, J. F. Bermejo-Martin et al., “Gene expression analysis of host innate immune responses during lethal H5N1 infection in ferrets,” Journal of Virology, vol. 82, no. 22, pp. 11308–11317, 2008. View at Publisher · View at Google Scholar · View at Scopus
  132. C. Cillóniz, K. Shinya, X. Peng et al., “Lethal influenza virus infection in macaques is associated with early dysregulation of inflammatory related genes,” PLoS pathogens, vol. 5, no. 10, Article ID e1000604, 2009. View at Google Scholar
  133. J. Herbert, W. L. Hutchinson, J. Carr et al., “Influenza virus infection is not affected by serum amyloid P component,” Molecular Medicine, vol. 8, no. 1, pp. 9–15, 2002. View at Google Scholar · View at Scopus
  134. M. R. White, E. Crouch, D. Chang et al., “Enhanced antiviral and opsonic activity of a human mannose-binding lectin and surfactant protein D chimera,” Journal of Immunology, vol. 165, no. 4, pp. 2108–2115, 2000. View at Google Scholar · View at Scopus
  135. W. C. Chang, K. L. Hartshorn, M. R. White et al., “Recombinant chimeric lectins consisting of mannose-binding lectin and L-ficolin are potent inhibitors of influenza A virus compared with mannose-binding lectin,” Biochemical Pharmacology, vol. 81, no. 3, pp. 388–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. S. J. Gardai, Y. Q. Xiao, M. Dickinson et al., “By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation,” Cell, vol. 115, no. 1, pp. 13–23, 2003. View at Publisher · View at Google Scholar · View at Scopus
  137. E. Crouch, Y. Tu, D. Briner et al., “Ligand specificity of human surfactant protein D: expression of a mutant trimeric collectin that shows enhanced interactions with influenza A virus,” Journal of Biological Chemistry, vol. 280, no. 17, pp. 17046–17056, 2005. View at Publisher · View at Google Scholar · View at Scopus
  138. E. Crouch, K. Hartshorn, T. Horlacher et al., “Recognition of mannosylated ligands and influenza a virus by human surfactant protein D: contributions of an extended site and residue 343,” Biochemistry, vol. 48, no. 15, pp. 3335–3345, 2009. View at Publisher · View at Google Scholar · View at Scopus
  139. M. R. White, P. Boland, T. Tecle et al., “Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain,” Journal of Innate Immunity, vol. 2, no. 3, pp. 267–279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. E. Crouch, N. Nikolaidis, F. X. McCormack et al., “Mutagenesis of surfactant protein D informed by evolution and x-ray crystallography enhances defenses against influenza A virus in vivo,” Journal of Biological Chemistry, vol. 286, no. 47, pp. 40681–40692, 2011. View at Publisher · View at Google Scholar
  141. M. Van Eijk, L. Bruinsma, K. L. Hartshorn et al., “Introduction of N-linked glycans in the lectin domain of surfactant protein D: impact on interactions with influenza A viruses,” Journal of Biological Chemistry, vol. 286, no. 23, pp. 20137–20151, 2011. View at Publisher · View at Google Scholar
  142. J. Lu, A. C. Willis, and K. B. M. Reid, “Purification, characterization and cDNA cloning of human lung surfactant protein D,” Biochemical Journal, vol. 284, no. 3, pp. 795–802, 1992. View at Google Scholar · View at Scopus
  143. S. Hansen, D. Holm, V. Moeller et al., “CL-46, a novel collectin highly expressed in bovine thymus and liver,” Journal of Immunology, vol. 169, no. 10, pp. 5726–5734, 2002. View at Google Scholar · View at Scopus
  144. R. T. Lee, Y. Ichikawa, H. J. Allen, and Y. C. Lee, “Binding characteristics of galactoside-binding lectin (galaptin) from human spleen,” Journal of Biological Chemistry, vol. 265, no. 14, pp. 7864–7871, 1990. View at Google Scholar · View at Scopus
  145. P. C. Reading, U. Holmskov, and E. M. Anders, “Antiviral activity of bovine collectins against rotaviruses,” Journal of General Virology, vol. 79, no. 9, pp. 2255–2263, 1998. View at Google Scholar · View at Scopus