Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012 (2012), Article ID 836196, 12 pages
http://dx.doi.org/10.1155/2012/836196
Review Article

Research on Plants for the Understanding of Diseases of Nuclear and Mitochondrial Origin

1Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Universidad Nacional de Rosario, Suipacha 531, 2000 Rosario, Argentina
2Department of Plant Biotechnology, Universidad Nacional de General San Martin (UNSAM), Avenida General Paz 5445, 1650 San Martín, Buenos Aires, Argentina

Received 17 February 2012; Accepted 28 March 2012

Academic Editor: Marina Clemente

Copyright © 2012 Claudia P. Spampinato and Diego F. Gomez-Casati. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. X. M. Xu and S. G. Moller, “The value of Arabidopsis research in understanding human disease states,” Current Opinion in Biotechnology, vol. 22, pp. 300–307, 2011. View at Google Scholar
  2. J. B. Hays, “Arabidopsis thaliana, a versatile model system for study of eukaryotic genome-maintenance functions,” DNA Repair, vol. 1, no. 8, pp. 579–600, 2002. View at Publisher · View at Google Scholar · View at Scopus
  3. H. T. Lynch and A. De la Chapelle, “Hereditary colorectal cancer,” New England Journal of Medicine, vol. 348, no. 10, pp. 919–932, 2003. View at Publisher · View at Google Scholar · View at Scopus
  4. M. E. Arana and T. A. Kunkel, “Mutator phenotypes due to DNA replication infidelity,” Seminars in Cancer Biology, vol. 20, no. 5, pp. 304–311, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Bellacosa, “Functional interactions and signaling properties of mammalian DNA mismatch repair proteins,” Cell Death and Differentiation, vol. 8, no. 11, pp. 1076–1092, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. R. R. Lyer, A. Pluciennik, V. Burdett, and P. L. Modrich, “DNA mismatch repair: functions and mechanisms,” Chemical Reviews, vol. 106, no. 2, pp. 302–323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. T. A. Kunkel and D. A. Erie, “DNA mismatch repair,” Annual Review of Biochemistry, vol. 74, pp. 681–710, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. P. Modrich and R. Lahue, “Mismatch repair in replication fidelity, genetic recombination, and cancer biology,” Annual Review of Biochemistry, vol. 65, pp. 101–133, 1996. View at Google Scholar · View at Scopus
  9. M. J. Schofield and P. Hsieh, “Dna mismatch repair: molecular mechanisms and biological function,” Annual Review of Microbiology, vol. 57, pp. 579–608, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. P. Modrich, “Mechanisms in eukaryotic mismatch repair,” Journal of Biological Chemistry, vol. 281, no. 41, pp. 30305–30309, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Acharya, T. Wilson, S. Gradia et al., “hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 24, pp. 13629–13634, 1996. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Alani, “The Saccharomyces cerevisiae Msh2 and Msh6 proteins form a complex that specifically binds to duplex oligonucleotides containing mismatched DNA base pairs,” Molecular and Cellular Biology, vol. 16, no. 10, pp. 5604–5615, 1996. View at Google Scholar · View at Scopus
  13. J. T. Drummond, G. M. Li, M. J. Longley, and P. Modrich, “Isolation of an hMSH2-p160 heterodimer that restores DNA mismatch repair to tumor cells,” Science, vol. 268, no. 5219, pp. 1909–1912, 1995. View at Google Scholar · View at Scopus
  14. J. Genschel, S. J. Littman, J. T. Drummond, and P. Modrich, “Isolation of MutSβ from human cells and comparison of the mismatch repair specificities of MutSβ and MutSα,” Journal of Biological Chemistry, vol. 273, no. 31, pp. 19895–19901, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Gradia, S. Acharya, and R. Fishel, “The human mismatch recognition complex hMSH2-hMSH6 functions as a novel molecular switch,” Cell, vol. 91, no. 7, pp. 995–1005, 1997. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Palombo et al., “Cisplatin and adriamycin resistance are associated with MutLa and mismatch repair deficiency in an ovarian tumor cell line,” Science, vol. 268, pp. 1912–1914, 1995. View at Google Scholar
  17. R. E. Johnson, G. K. Kovvali, L. Prakash, and S. Prakash, “Requirement of the yeast MSH3 and MSH6 genes for MSH2-dependent genomic stability,” Journal of Biological Chemistry, vol. 271, no. 13, pp. 7285–7288, 1996. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Palombo, I. Iaccarino, E. Nakajima, M. Ikejima, T. Shimada, and J. Jiricny, “hMutSβ, a heterodimer of hMSH2 and hMSH3, binds to insertion/deletion loops in DNA,” Current Biology, vol. 6, no. 9, pp. 1181–1184, 1996. View at Publisher · View at Google Scholar · View at Scopus
  19. J. M. Harrington and R. D. Kolodner, “Saccharomyces cerevisiae Msh2-Msh3 acts in repair of base-base mispairs,” Molecular and Cellular Biology, vol. 27, no. 18, pp. 6546–6554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. G. T. Marsischky, N. Filosi, M. F. Kane, and R. Kolodner, “Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair,” Genes and Development, vol. 10, no. 4, pp. 407–420, 1996. View at Google Scholar · View at Scopus
  21. B. D. Harfe and S. Jinks-Robertson, “DNA mismatch repair and genetic instability,” Annual Review of Genetics, vol. 34, pp. 359–399, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. S. M. Lipkin, V. Wang, R. Jacoby et al., “MLH3: a DNA mismatch repair gene associated with mammalian microsatellite instability,” Nature Genetics, vol. 24, no. 1, pp. 27–35, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. C. R. Boland, M. Koi, D. K. Chang, and J. M. Carethers, “The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside,” Familial Cancer, vol. 7, no. 1, pp. 41–52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. A. H. Alou, M. Jean, O. Domingue, and F. J. Belzile, “Structure and expression of AtPMS1, the Arabidopsis ortholog of the yeast DNA repair gene PMS1,” Plant Science, vol. 167, no. 3, pp. 447–456, 2004. View at Publisher · View at Google Scholar · View at Scopus
  25. K. M. Culligan and J. B. Hays, “Arabidopsis MutS homologs—AtMSH2, AtMSH3, AtMSH6, and a novel AtMSH7—form three distinct protein heterodimers with different specificities for mismatched DNA,” Plant Cell, vol. 12, no. 6, pp. 991–1002, 2000. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Jean, J. Pelletier, M. Hilpert, F. Belzile, and R. Kunze, “Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana,” Molecular and General Genetics, vol. 262, no. 4-5, pp. 633–642, 1999. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Adé, F. Belzile, H. Philippe, and M. P. Doutriaux, “Four mismatch repair paralogues coexist in Arabidopsis thaliana: AtMSH2, AtMSH3, AtMSH6-1 and AtMSH6-2,” Molecular and General Genetics, vol. 262, no. 2, pp. 239–249, 1999. View at Publisher · View at Google Scholar · View at Scopus
  28. N. Jackson, E. Sanchez-Moran, E. Buckling, S. J. Armstrong, G. H. Jones, and F. C. H. Franklin, “Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis,” EMBO Journal, vol. 25, no. 6, pp. 1315–1323, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. S. M. Tam, S. Samipak, A. Britt, and R. T. Chetelat, “Characterization and comparative sequence analysis of the DNA mismatch repair MSH2 and MSH7 genes from tomato,” Genetica, vol. 137, no. 3, pp. 341–354, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. S. Y. Wu, K. Culligan, M. Lamers, and J. Hays, “Dissimilar mispair-recognition spectra of Arabidopsis DNA-mismatch-repair proteins MSH2·MSH6 (MutSα) and MSH2·MSH7 (MutSγ),” Nucleic Acids Research, vol. 31, no. 20, pp. 6027–6034, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Dong, R. Whitford, and P. Langridge, “A DNA mismatch repair gene links to the Ph2 locus in wheat,” Genome, vol. 45, no. 1, pp. 116–124, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. A. H. Lloyd, A. S. Milligan, P. Langridge, and J. A. Able, “TaMSH7: a cereal mismatch repair gene that affects fertility in transgenic barley (Hordeum vulgare L.),” BMC Plant Biology, vol. 7, article 67, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. J. M. Leonard, S. R. Bollmann, and J. B. Hays, “Reduction of stability of Arabidopsis genomic and transgenic DNA-repeat sequences (microsatellites) by inactivation of AtMSH2 mismatch-repair function,” Plant Physiology, vol. 133, no. 1, pp. 328–338, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. P. D. Hoffman, J. M. Leonard, G. E. Lindberg, S. R. Bollmann, and J. B. Hays, “Rapid accumulation of mutations during seed-to-seed propagation of mismatch-repair-defective Arabidopsis,” Genes and Development, vol. 18, no. 21, pp. 2676–2685, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. É. Dion, L. Li, M. Jean, and F. Belzile, “An Arabidopsis MLH1 mutant exhibits reproductive defects and reveals a dual role for this gene in mitotic recombination,” Plant Journal, vol. 51, no. 3, pp. 431–440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. C. P. Spampinato, R. L. Gomez, C. Galles, and L. D. Lario, “From bacteria to plants: a compendium of mismatch repair assays,” Mutation Research, vol. 682, no. 2-3, pp. 110–128, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Depeiges, S. Farget, F. Degroote, and G. Picard, “A new transgene assay to study microsatellite instability in wild-type and mismatch-repair defective plant progenies,” Plant Science, vol. 168, no. 4, pp. 939–947, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. L. Li, E. Dion, G. Richard, O. Domingue, M. Jean, and F. J. Belzile, “The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences,” Plant Molecular Biology, vol. 69, no. 6, pp. 675–684, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. L. Li, M. Jean, and F. Belzile, “The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis,” Plant Journal, vol. 45, no. 6, pp. 908–916, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. E. Emmanuel, E. Yehuda, C. Melamed-Bessudo, N. Avivi-Ragolsky, and A. A. Levy, “The role of AtMSH2 in homologous recombination in Arabidopsis thaliana,” EMBO Reports, vol. 7, no. 1, pp. 100–105, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Lafleuriel, F. Degroote, A. Depeiges, and G. Picard, “Impact of the loss of AtMSH2 on double-strand break-induced recombination between highly diverged homeologous sequences in Arabidopsis thaliana germinal tissues,” Plant Molecular Biology, vol. 63, no. 6, pp. 833–846, 2007. View at Publisher · View at Google Scholar · View at Scopus
  42. Q. Chao, C. D. Sullivan, J. M. Getz et al., “Rapid generation of plant traits via regulation of DNA mismatch repair,” Plant Biotechnology Journal, vol. 3, no. 4, pp. 399–407, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. H. Alou, A. Azaiez, M. Jean, and F. J. Belzile, “Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability,” Plant Molecular Biology, vol. 56, no. 3, pp. 339–349, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. C. Galles, R. L. Gomez, and C. P. Spampinato, “PMS1 from Arabidopsis thaliana: optimization of protein overexpression in Escherichia coli,” Molecular Biology Reports, vol. 38, no. 2, pp. 1063–1070, 2011. View at Publisher · View at Google Scholar · View at Scopus
  45. R. L. Gomez, C. Galles, and C. P. Spampinato, “High-level production of MSH2 from Arabidopsis thaliana: a DNA mismatch repair system key subunit,” Molecular Biotechnology, vol. 47, no. 2, pp. 120–129, 2011. View at Publisher · View at Google Scholar · View at Scopus
  46. L. D. Lario, E. Ramirez-Parra, C. Gutierrez, P. Casati, and C. P. Spampinato, “Regulation of plant MSH2 and MSH6 genes in the UV-B-induced DNA damage response,” Journal of Experimental Botany, vol. 62, no. 8, pp. 2925–2937, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. K. H. Kraemer, M. M. Lee, and J. Scotto, “Xeroderma pigmentosum. Cutaneous, ocular, and neurologic abnormalities in 830 published cases,” Archives of Dermatology, vol. 123, no. 2, pp. 241–250, 1987. View at Google Scholar · View at Scopus
  48. K. H. Kraemer, N. J. Patronas, R. Schiffmann, B. P. Brooks, D. Tamura, and J. J. DiGiovanna, “Xeroderma pigmentosum, trichothiodystrophy and Cockayne syndrome: a complex genotype-phenotype relationship,” Neuroscience, vol. 145, no. 4, pp. 1388–1396, 2007. View at Publisher · View at Google Scholar · View at Scopus
  49. E. C. Friedberg, G. C. Walker, W. Siede, R. D. Wood, R. A. Schultz, and T. Ellenberger, DNA Repair and Mutagenesis, ASM Press, Washington, DC, USA, 2nd edition, 2005.
  50. A. M. Bhutto and S. H. Kirk, “Population distribution of xeroderma pigmentosum,” Advances in Experimental Medicine and Biology, vol. 637, pp. 138–143, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. J. H. J. Hoeijmakers, “Genome maintenance mechanisms for preventing cancer,” Nature, vol. 411, no. 6835, pp. 366–374, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. E. C. Friedberg, “How nucleotide excision repair protects against cancer,” Nature Reviews Cancer, vol. 1, no. 1, pp. 22–33, 2001. View at Google Scholar · View at Scopus
  53. R. Dip, U. Camenisch, and H. Naegeli, “Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair,” DNA Repair, vol. 3, no. 11, pp. 1409–1423, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Sugasawa, T. Okamoto, Y. Shimizu, C. Masutani, S. Iwai, and F. Hanaoka, “A multistep damage recognition mechanism for global genomic nucleotide excision repair,” Genes and Development, vol. 15, no. 5, pp. 507–521, 2001. View at Publisher · View at Google Scholar · View at Scopus
  55. K. Sugasawa, Y. Shimizu, S. Iwai, and F. Hanaoka, “A molecular mechanism for DNA damage recognition by the xeroderma pigmentosum group C protein complex,” DNA Repair, vol. 1, no. 1, pp. 95–107, 2002. View at Publisher · View at Google Scholar · View at Scopus
  56. J. H. Min and N. P. Pavletich, “Recognition of DNA damage by the Rad4 nucleotide excision repair protein,” Nature, vol. 449, no. 7162, pp. 570–575, 2007. View at Publisher · View at Google Scholar · View at Scopus
  57. D. Hoogstraten, S. Bergink, V. H. M. Verbiest et al., “Versatile DNA damage detection by the global genome nucleotide excision repair protein XPC,” Journal of Cell Science, vol. 121, no. 17, pp. 2850–2859, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. J. P. M. Melis, M. Luijten, L. H. F. Mullenders, and H. van Steeg, “The role of XPC: implications in cancer and oxidative DNA damage,” Mutation Research, vol. 728, no. 3, pp. 107–117, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. A. F. Fagbemi, B. Orelli, and O. D. Schärer, “Regulation of endonuclease activity in human nucleotide excision repair,” DNA Repair, vol. 10, no. 7, pp. 722–729, 2011. View at Publisher · View at Google Scholar · View at Scopus
  60. K. Sugasawa, “Xeroderma pigmentosum genes: functions inside and outside DNA repair,” Carcinogenesis, vol. 29, no. 3, pp. 455–465, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. O. D. Schärer, “Achieving broad substrate specificity in damage recognition by binding accessible nondamaged DNA,” Molecular Cell, vol. 28, no. 2, pp. 184–186, 2007. View at Publisher · View at Google Scholar · View at Scopus
  62. O. Maillard, S. Solyom, and H. Naegeli, “An aromatic sensor with aversion to damaged strands confers versatility to DNA repair,” PLoS biology, vol. 5, no. 4, p. e79, 2007. View at Publisher · View at Google Scholar · View at Scopus
  63. P. C. Hanawalt and G. Spivak, “Transcription-coupled DNA repair: two decades of progress and surprises,” Nature Reviews Molecular Cell Biology, vol. 9, no. 12, pp. 958–970, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. Oksenych and F. Coin, “The long unwinding road: XPB and XPD helicases in damaged DNA opening,” Cell Cycle, vol. 9, no. 1, pp. 90–96, 2010. View at Google Scholar · View at Scopus
  65. A. Zotter, M. S. Luijsterburg, D. O. Warmerdam et al., “Recruitment of the nucleotide excision repair endonuclease XPG to sites of UV-induced DNA damage depends on functional TFIIH,” Molecular and Cellular Biology, vol. 26, no. 23, pp. 8868–8879, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. T. Riedl, F. Hanaoka, and J. M. Egly, “The comings and goings of nucleotide excision repair factors on damaged DNA,” EMBO Journal, vol. 22, no. 19, pp. 5293–5303, 2003. View at Publisher · View at Google Scholar · View at Scopus
  67. E. Evans, J. Fellows, A. Coffer, and R. D. Wood, “Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein,” EMBO Journal, vol. 16, no. 3, pp. 625–638, 1997. View at Publisher · View at Google Scholar · View at Scopus
  68. E. Evans, J. G. Moggs, J. R. Hwang, J. M. Egly, and R. D. Wood, “Mechanism of open complex and dual incision formation by human nucleotide excision repair factors,” EMBO Journal, vol. 16, no. 21, pp. 6559–6573, 1997. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Mu, M. Wakasugi, D. S. Hsu, and A. Sancar, “Characterization of reaction intermediates of human excision repair nuclease,” Journal of Biological Chemistry, vol. 272, no. 46, pp. 28971–28979, 1997. View at Publisher · View at Google Scholar · View at Scopus
  70. R. T. Hess, U. Schwitter, M. Petretta, B. Giese, and H. Naegeli, “Bipartite substrate discrimination by human nucleotide excision repair,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 13, pp. 6664–6669, 1997. View at Publisher · View at Google Scholar · View at Scopus
  71. T. Ogi, S. Limsirichaikul, R. M. Overmeer et al., “Three DNA polymerases, recruited by different mechanisms, carry out NER repair synthesis in human cells,” Molecular Cell, vol. 37, no. 5, pp. 714–727, 2010. View at Publisher · View at Google Scholar · View at Scopus
  72. J. Moser, H. Kool, I. Giakzidis, K. Caldecott, L. H. F. Mullenders, and M. I. Fousteri, “Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase IIIα in a cell-cycle-specific manner,” Molecular Cell, vol. 27, no. 2, pp. 311–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  73. R. Schmitz-Hoerner and G. Weissenböck, “Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels,” Phytochemistry, vol. 64, no. 1, pp. 243–255, 2003. View at Publisher · View at Google Scholar · View at Scopus
  74. J. Rozema, L. O. Björn, J. F. Bornman et al., “The role of UV-B radiation in aquatic and terrestrial ecosystems-An experimental and functional analysis of the evolution of UV-absorbing compounds,” Journal of Photochemistry and Photobiology B, vol. 66, no. 1, pp. 2–12, 2002. View at Publisher · View at Google Scholar · View at Scopus
  75. A. E. Stapleton and V. Walbot, “Flavonoids can protect maize DNA from the induction of ultraviolet radiation damage,” Plant Physiology, vol. 105, no. 3, pp. 881–889, 1994. View at Google Scholar · View at Scopus
  76. M. Tevini, J. Braun, and G. Fieser, “The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation,” Photochemistry and Photobiology, vol. 53, pp. 329–333, 1991. View at Google Scholar
  77. S. Reuber, J. F. Bornman, and G. Weissenböck, “Phenylpropanoid compounds in primary leaf tissues of rye (Secale cereale). Light response of their metabolism and the possible role in UV-B protection,” Physiologia Plantarum, vol. 97, no. 1, pp. 160–168, 1996. View at Google Scholar · View at Scopus
  78. N. Tuteja, M. B. Singh, M. K. Misra, P. L. Bhalla, and R. Tuteja, “Molecular mechanisms of DNA damage and repair: progress in plants,” Critical Reviews in Biochemistry and Molecular Biology, vol. 36, no. 4, pp. 337–397, 2001. View at Google Scholar · View at Scopus
  79. A. B. Britt, “DNA damage and repair in plants,” Annual Review of Plant Physiology and Plant Molecular Biology, vol. 47, no. 1, pp. 75–100, 1996. View at Google Scholar · View at Scopus
  80. L. G. Landry, A. E. Stapleton, J. Lim et al., “An Arabidopsis photolyase mutant is hypersensitive to ultraviolet-B radiation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 1, pp. 328–332, 1997. View at Publisher · View at Google Scholar · View at Scopus
  81. S. Kimura, Y. Tahira, T. Ishibashi et al., “DNA repair in higher plants; photoreactivation is the major DNA repair pathway in non-proliferating cells while excision repair (nucleotide excision repair and base excision repair) is active in proliferating cells,” Nucleic Acids Research, vol. 32, no. 9, pp. 2760–2767, 2004. View at Publisher · View at Google Scholar · View at Scopus
  82. M. Ahmad, J. A. Jarillo, L. J. Klimczak et al., “An enzyme similar to animal type II photolyases mediates photoreactivation in arabidopsis,” Plant Cell, vol. 9, no. 2, pp. 199–207, 1997. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Z. Jiang, J. Yee, D. L. Mitchell, and A. B. Britt, “Photorepair mutants of arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 14, pp. 7441–7445, 1997. View at Publisher · View at Google Scholar · View at Scopus
  84. S. Nakajima, M. Sugiyama, S. Iwai et al., “Cloning and characterization of a gene (UVR3) required for photorepair of 6-4 photoproducts in Arabidopsis thaliana,” Nucleic Acids Research, vol. 26, no. 2, pp. 638–644, 1998. View at Publisher · View at Google Scholar · View at Scopus
  85. B. A. Kunz, H. J. Anderson, M. J. Osmond, and E. J. Vonarx, “Components of nucleotide excision repair and DNA damage tolerance in Arabidopsis thaliana,” Environmental and Molecular Mutagenesis, vol. 45, no. 2-3, pp. 115–127, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. D. T. Ribeiro, C. R. MacHado, R. M. A. Costa, U. M. Praekelt, M. A. Van Sluys, and C. F. M. Menck, “Cloning of a cDNA from Arabidopsis thaliana homologous to the human XPB gene,” Gene, vol. 208, no. 2, pp. 207–213, 1998. View at Publisher · View at Google Scholar · View at Scopus
  87. R. M. A. Costa, P. G. Morgante, C. M. Berra et al., “The participation of AtXPB1, the XPB/RAD25 homologue gene from Arabidopsis thaliana, in DNA repair and plant development,” Plant Journal, vol. 28, no. 4, pp. 385–395, 2001. View at Publisher · View at Google Scholar · View at Scopus
  88. P. G. Morgante, C. M. Berra, M. Nakabashi, R. M. A. Costa, C. F. M. Menck, and M. A. Van Sluys, “Functional XPB/RAD25 redundancy in Arabidopsis genome: characterization of AtXPB2 and expression analysis,” Gene, vol. 344, pp. 93–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  89. N. Tuteja, P. Ahmad, B. B. Panda, and R. Tuteja, “Genotoxic stress in plants: shedding light on DNA damage, repair and DNA repair helicases,” Mutation Research, vol. 681, no. 2-3, pp. 134–149, 2009. View at Publisher · View at Google Scholar · View at Scopus
  90. Z. Liu, S. W. Hong, M. Escobar et al., “Arabidopsis UVH6, a homolog of human XPD and yeast RAD3 DNA repair genes, functions in DNA repair and is essential for plant growth,” Plant Physiology, vol. 132, no. 3, pp. 1405–1414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  91. T. Ishibashi, S. Kimura, T. Yamamoto et al., “Rice UV-damaged DNA binding protein homologues are most abundant in proliferating tissues,” Gene, vol. 308, no. 1-2, pp. 79–87, 2003. View at Publisher · View at Google Scholar · View at Scopus
  92. S. Biedermann and H. Hellmann, “The DDB1a interacting proteins ATCSA-1 and DDB2 are critical factors for UV-B tolerance and genomic integrity in Arabidopsis thaliana,” Plant Journal, vol. 62, no. 3, pp. 404–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. A. Koga, T. Ishibashi, S. Kimura, Y. Uchiyama, and K. Sakaguchi, “Characterization of T-DNA insertion mutants and RNAi silenced plants of Arabidopsis thaliana UV-damaged DNA binding protein 2 (AtUV-DDB2),” Plant Molecular Biology, vol. 61, no. 1-2, pp. 227–240, 2006. View at Publisher · View at Google Scholar · View at Scopus
  94. J. Molinier, E. Lechner, E. Dumbliauskas, and P. Genschik, “Regulation and role of arabidopsis CUL4-DDB1A-DDB2 in maintaining genome integrity upon UV stress,” PLoS Genetics, vol. 4, no. 6, Article ID e1000093, 2008. View at Publisher · View at Google Scholar · View at Scopus
  95. F. Gallego, O. Fleck, A. Li, J. Wyrzykowska, and B. Tinland, “AtRAD1, a plant homologue of human and yeast nucleotide excision repair endonucleases, is involved in dark repair of UV damages and recombination,” Plant Journal, vol. 21, no. 6, pp. 507–518, 2000. View at Publisher · View at Google Scholar · View at Scopus
  96. Z. Liu, G. S. Hossain, M. A. Islas-Osuna, D. L. Mitchell, and D. W. Mount, “Repair of UV damage in plants by nucleotide excision repair: arabidopsis UVH1 DNA repair gene is a homolog of Saccharomyces cerevisiae Rad1,” Plant Journal, vol. 21, no. 6, pp. 519–528, 2000. View at Publisher · View at Google Scholar · View at Scopus
  97. S. B. Preuss and A. B. Britt, “A DNA-damage-induced cell cycle checkpoint in arabidopsis,” Genetics, vol. 164, no. 1, pp. 323–334, 2003. View at Google Scholar · View at Scopus
  98. A. L. Fidantsef, D. L. Mitchell, and A. B. Britt, “The Arabidopsis UVH1 gene is a homolog of the yeast repair endonuclease RAD1,” Plant Physiology, vol. 124, no. 2, pp. 579–586, 2000. View at Google Scholar · View at Scopus
  99. Z. Liu, J. D. Hall, and D. W. Mount, “Arabidopsis UVH3 gene is a homolog of the Saccharomyces cerevisiae RAD2 and human XPG DNA repair genes,” Plant Journal, vol. 26, no. 3, pp. 329–338, 2001. View at Publisher · View at Google Scholar · View at Scopus
  100. L. H. Thompson and D. Schild, “Recombinational DNA repair and human disease,” Mutation Research, vol. 509, no. 1-2, pp. 49–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  101. H. H. Chun and R. A. Gatti, “Ataxia-telangiectasia, an evolving phenotype,” DNA Repair, vol. 3, no. 8-9, pp. 1187–1196, 2004. View at Publisher · View at Google Scholar · View at Scopus
  102. A. Nowak-Wegrzyn, T. O. Crawford, J. A. Winkelstein, K. A. Carson, and H. M. Lederman, “Immunodeficiency and infections in ataxia-telangiectasia,” Journal of Pediatrics, vol. 144, no. 4, pp. 505–511, 2004. View at Publisher · View at Google Scholar · View at Scopus
  103. P. J. McKinnon, “ATM and ataxia telangiectasia. Second in molecular medicine review series,” EMBO Reports, vol. 5, no. 8, pp. 772–776, 2004. View at Publisher · View at Google Scholar · View at Scopus
  104. R. A. Gatti, S. Becker-Catania, H. H. Chun et al., “The pathogenesis of ataxia-telangiectasia: learning from a Rosetta Stone,” Clinical Reviews in Allergy and Immunology, vol. 20, no. 1, pp. 87–108, 2001. View at Publisher · View at Google Scholar · View at Scopus
  105. Y. Shiloh, “ATM and related protein kinases: safeguarding genome integrity,” Nature Reviews Cancer, vol. 3, no. 3, pp. 155–168, 2003. View at Publisher · View at Google Scholar · View at Scopus
  106. C. J. Bakkenist and M. B. Kastan, “DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation,” Nature, vol. 421, no. 6922, pp. 499–506, 2003. View at Publisher · View at Google Scholar · View at Scopus
  107. R. Kitagawa, C. J. Bakkenist, P. J. McKinnon, and M. B. Kastan, “Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway,” Genes and Development, vol. 18, no. 12, pp. 1423–1438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Bensimon, R. Aebersold, and Y. Shiloh, “Beyond ATM: the protein kinase landscape of the DNA damage response,” FEBS Letters, vol. 585, no. 11, pp. 1625–1639, 2011. View at Publisher · View at Google Scholar · View at Scopus
  109. Y. Lee, M. J. Chong, and P. J. McKinnon, “Ataxia telangiectasia mutated-dependent apoptosis after genotoxic stress in the developing nervous system is determined by cellular differentiation status,” Journal of Neuroscience, vol. 21, no. 17, pp. 6687–6693, 2001. View at Google Scholar · View at Scopus
  110. A. Alexander and C. L. Walker, “Differential localization of ATM is correlated with activation of distinct downstream signaling pathways,” Cell Cycle, vol. 9, no. 18, pp. 3685–3686, 2010. View at Publisher · View at Google Scholar · View at Scopus
  111. C. Cosentino, D. Grieco, and V. Costanzo, “ATM activates the pentose phosphate pathway promoting anti-oxidant defence and DNA repair,” EMBO Journal, vol. 30, no. 3, pp. 546–555, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. Z. Guo, R. Deshpande, and T. T. Paull, “ATM activation in the presence of oxidative stress,” Cell Cycle, vol. 9, no. 24, pp. 4805–4811, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. Z. Guo, S. Kozlov, M. F. Lavin, M. D. Person, and T. T. Paull, “ATM activation by oxidative stress,” Science, vol. 330, no. 6003, pp. 517–521, 2010. View at Publisher · View at Google Scholar · View at Scopus
  114. V. Garcia, M. Salanoubat, N. Choisne, and A. Tissier, “An ATM homologue from Arabidopsis thaliana: complete genomic organisation and expression analysis,” Nucleic Acids Research, vol. 28, no. 8, pp. 1692–1699, 2000. View at Google Scholar · View at Scopus
  115. V. Garcia, H. Bruchet, D. Camescasse, F. Granier, D. Bouchez, and A. Tissier, “AtATM is essential for meiosis and the somatic response to DNA damage in plants,” Plant Cell, vol. 15, no. 1, pp. 119–132, 2003. View at Publisher · View at Google Scholar · View at Scopus
  116. N. Fulcher and R. Sablowski, “Hypersensitivity to DNA damage in plant stem cell niches,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 49, pp. 20984–20988, 2009. View at Publisher · View at Google Scholar · View at Scopus
  117. K. M. Culligan, C. E. Robertson, J. Foreman, P. Doerner, and A. B. Britt, “ATR and ATM play both distinct and additive roles in response to ionizing radiation,” Plant Journal, vol. 48, no. 6, pp. 947–961, 2006. View at Publisher · View at Google Scholar · View at Scopus
  118. L. Ricaud, C. Proux, J. P. Renou et al., “ATM-mediated transcriptional and developmental responses to γ-rays in Arabidopsis,” PLoS ONE, vol. 2, no. 5, article e430, 2007. View at Publisher · View at Google Scholar · View at Scopus
  119. S. Adachi, K. Minamisawaa, V. Okushima et al., “Programmed induction of endoreduplication by DNA double-strand breaks in Arabidopsis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, pp. 10004–10009, 2011. View at Google Scholar
  120. K. Yoshiyama, P. A. Conklin, N. D. Huefner, and A. B. Britt, “Suppressor of gamma response 1 (SOG1) encodes a putative transcription factor governing multiple responses to DNA damage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12843–12848, 2009. View at Publisher · View at Google Scholar · View at Scopus
  121. T. Furukawa, M. J. Curtis, C. M. Tominey et al., “A shared DNA-damage-response pathway for induction of stem-cell death by UVB and by gamma irradiation,” DNA Repair, vol. 9, no. 9, pp. 940–948, 2010. View at Publisher · View at Google Scholar · View at Scopus
  122. V. Campuzano, L. Montermini, M. D. Moltò et al., “Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion,” Science, vol. 271, no. 5254, pp. 1423–1427, 1996. View at Google Scholar · View at Scopus
  123. M. Pandolfo, “The molecular basis of Friedreich ataxia,” Advances in Experimental Medicine and Biology, vol. 516, pp. 99–118, 2002. View at Google Scholar · View at Scopus
  124. H. Puccio and M. Kœnig, “Friedreich ataxia: a paradigm for mitochondrial diseases,” Current Opinion in Genetics and Development, vol. 12, no. 3, pp. 272–277, 2002. View at Publisher · View at Google Scholar · View at Scopus
  125. M. Pandolfo and A. Pastore, “The pathogenesis of Friedreich ataxia and the structure and function of frataxin,” Journal of Neurology, vol. 256, no. 1, pp. 9–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  126. H. Puccio, “Multicellular models of Friedreich ataxia,” Journal of Neurology, vol. 256, no. 1, pp. 18–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  127. R. Santos, S. Lefevre, D. Sliwa, A. Seguin, J. M. Camadro, and E. Lesuisse, “Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities,” Antioxidants and Redox Signaling, vol. 13, no. 5, pp. 651–690, 2010. View at Publisher · View at Google Scholar · View at Scopus
  128. U. J. Dijkstra, J. L. Willems, E. M. Joosten, and F. J. Gabreëls, “Friedreich ataxia and low pyruvate carboxylase activity in liver and fibroblasts,” Annals of Neurology, vol. 13, no. 3, pp. 325–327, 1983. View at Google Scholar · View at Scopus
  129. M. Babcock, D. De Silva, R. Oaks et al., “Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin,” Science, vol. 276, no. 5319, pp. 1709–1712, 1997. View at Publisher · View at Google Scholar · View at Scopus
  130. V. Campuzano, L. Montermini, Y. Lutz et al., “Frataxin is reduced in Friedreich ataxia patients and is associated with mitochondrial membranes,” Human Molecular Genetics, vol. 6, no. 11, pp. 1771–1780, 1997. View at Publisher · View at Google Scholar · View at Scopus
  131. T. J. Gibson, E. V. Koonin, G. Musco, A. Pastore, and P. Bork, “Friedreich's ataxia protein: phylogenetic evidence for mitochondrial dysfunction,” Trends in Neurosciences, vol. 19, no. 11, pp. 465–468, 1996. View at Publisher · View at Google Scholar · View at Scopus
  132. H. Koutnikova, V. Campuzano, F. Foury, P. Dollé, O. Cazzalini, and M. Koenig, “Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin,” Nature Genetics, vol. 16, no. 4, pp. 345–351, 1997. View at Publisher · View at Google Scholar · View at Scopus
  133. M. V. Busi, E. J. Zabaleta, A. Araya, and D. F. Gomez-Casati, “Functional and molecular characterization of the frataxin homolog from Arabidopsis thaliana,” FEBS Letters, vol. 576, no. 1-2, pp. 141–144, 2004. View at Publisher · View at Google Scholar · View at Scopus
  134. M. Ristow, M. F. Pfister, A. J. Yee et al., “Frataxin activates mitochondrial energy conversion and oxidative phosphorylation,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, pp. 12239–12243, 2000. View at Google Scholar
  135. O. S. Chen, S. Hemenway, and J. Kaplan, “Inhibition of Fe-S cluster biosynthesis decreases mitochondrial iron export: evidence that Yfh1p affects Fe-S cluster synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 19, pp. 12321–12326, 2002. View at Publisher · View at Google Scholar · View at Scopus
  136. U. Mühlenhoff, N. Richhardt, M. Ristow, G. Kispal, and R. Lill, “The yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins,” Human Molecular Genetics, vol. 11, no. 17, pp. 2025–2036, 2002. View at Google Scholar · View at Scopus
  137. M. A. Huynen, B. Snel, P. Bork, and T. J. Gibson, “The phylogenetic distribution of frataxin indicates a role in iron-sulfur cluster protein assembly,” Human Molecular Genetics, vol. 10, no. 21, pp. 2463–2468, 2001. View at Google Scholar · View at Scopus
  138. M. V. Busi and D. F. Gomez-Casati, “Exploring frataxin function,” IUBMB Life, vol. 64, pp. 56–63, 2012. View at Google Scholar
  139. M. V. Maliandi, M. V. Busi, M. Clemente, E. J. Zabaleta, A. Araya, and D. F. Gomez-Casati, “Expression and one-step purification of recombinant Arabidopsis thaliana frataxin homolog (AtFH),” Protein Expression and Purification, vol. 51, no. 2, pp. 157–161, 2007. View at Publisher · View at Google Scholar · View at Scopus
  140. M. V. Busi, M. V. Maliandi, H. Valdez et al., “Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress,” Plant Journal, vol. 48, no. 6, pp. 873–882, 2006. View at Publisher · View at Google Scholar · View at Scopus
  141. E. Lesuisse, R. Santos, B. F. Matzanke, S. A. B. Knight, J. M. Camadro, and A. Dancis, “Iron use for haeme synthesis is under control of the yeast frataxin homologue (Yfh1),” Human Molecular Genetics, vol. 12, no. 8, pp. 879–889, 2003. View at Publisher · View at Google Scholar · View at Scopus
  142. M. V. Maliandi, M. V. Busi, V. R. Turowski, L. Leaden, A. Araya, and D. F. Gomez-Casati, “The mitochondrial protein frataxin is essential for heme biosynthesis in plants,” FEBS Journal, vol. 278, no. 3, pp. 470–481, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. R. A. Schoenfeld, E. Napoli, A. Wong et al., “Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells,” Human Molecular Genetics, vol. 14, no. 24, pp. 3787–3799, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. N. Ventura, S. Rea, S. T. Henderson, I. Condo, T. E. Johnson, and R. Testi, “Reduced expression of frataxin extends the lifespan of Caenorhabditis elegans,” Aging Cell, vol. 4, no. 2, pp. 109–112, 2005. View at Publisher · View at Google Scholar · View at Scopus
  145. P. R. Anderson, K. Kirby, A. J. Hilliker, and J. P. Phillips, “RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila,” Human Molecular Genetics, vol. 14, no. 22, pp. 3397–3405, 2005. View at Publisher · View at Google Scholar · View at Scopus
  146. R. Santos, N. Buisson, S. A. B. Knight, A. Dancis, J. M. Camadro, and E. Lesuisse, “Candida albicans lacking the frataxin homologue: a relevant yeast model for studying the role of frataxin,” Molecular Microbiology, vol. 54, no. 2, pp. 507–519, 2004. View at Publisher · View at Google Scholar · View at Scopus
  147. G. Tan, E. Napoli, F. Taroni, and G. Cortopassi, “Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells,” Human Molecular Genetics, vol. 12, no. 14, pp. 1699–1711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  148. E. Vivas, E. Skovran, and D. M. Downs, “Salmonella enterica strains lacking the frataxin homolog cyaY show defects in Fe-S cluster metabolism in vivo,” Journal of Bacteriology, vol. 188, no. 3, pp. 1175–1179, 2006. View at Publisher · View at Google Scholar · View at Scopus
  149. R. Lill and U. Mühlenhoff, “Maturation of iron-sulfur proteins in eukaryotes: mechanisms, connected processes, and diseases,” Annual Review of Biochemistry, vol. 77, pp. 669–700, 2008. View at Publisher · View at Google Scholar · View at Scopus
  150. J. Balk and S. Lobréaux, “Biogenesis of iron-sulfur proteins in plants,” Trends in Plant Science, vol. 10, no. 7, pp. 324–331, 2005. View at Publisher · View at Google Scholar · View at Scopus
  151. E. Napoli, D. Morin, R. Bernhardt, A. Buckpitt, and G. Cortopassi, “Hemin rescues adrenodoxin, heme a and cytochrome oxidase activity in frataxin-deficient oligodendroglioma cells,” Biochimica et Biophysica Acta, vol. 1772, no. 7, pp. 773–780, 2007. View at Publisher · View at Google Scholar · View at Scopus
  152. Y. Hatefi, “The mitochondrial electron transport and oxidative phosphorylation system,” Annual Review of Biochemistry, vol. 54, pp. 1015–1069, 1985. View at Google Scholar · View at Scopus
  153. M. Saraste, “Oxidative phosphorylation at the fin de siecle,” Science, vol. 283, no. 5407, pp. 1488–1493, 1999. View at Publisher · View at Google Scholar · View at Scopus
  154. S. DiMauro and E. A. Schon, “Mitochondrial respiratory-chain diseases,” New England Journal of Medicine, vol. 348, no. 26, pp. 2656–2668, 2003. View at Publisher · View at Google Scholar · View at Scopus
  155. F. Foury and M. Kucej, “Yeast mitochondrial biogenesis: a model system for humans?” Current Opinion in Chemical Biology, vol. 6, no. 1, pp. 106–111, 2002. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Schwimmer, M. Rak, L. Lefebvre-Legendre, S. Duvezin-Caubet, G. Plane, and J. P. di Rago, “Yeast models of human mitochondrial diseases: from molecular mechanisms to drug screening,” Biotechnology Journal, vol. 1, no. 3, pp. 270–281, 2006. View at Publisher · View at Google Scholar · View at Scopus
  157. M. J. Falk, Z. Zhang, J. R. Rosenjack et al., “Metabolic pathway profiling of mitochondrial respiratory chain mutants in C. elegans,” Molecular Genetics and Metabolism, vol. 93, no. 4, pp. 388–397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  158. V. Petruzzella and S. Papa, “Mutations in human nuclear genes encoding for subunits of mitochondrial respiratory complex I: the NDUFS4 gene,” Gene, vol. 286, no. 1, pp. 149–154, 2002. View at Publisher · View at Google Scholar · View at Scopus
  159. J. L. Loeffen, J. A. Smeitink, J. M. Trijbels et al., “Isolated complex I deficiency in children: clinical, biochemical and genetic aspects,” Human Mutation, vol. 15, pp. 123–134, 2000. View at Google Scholar
  160. S. Papa, V. Petruzzella, S. Scacco et al., “Pathogenetic mechanisms in hereditary dysfunctions of complex I of the respiratory chain in neurological diseases,” Biochimica et Biophysica Acta, vol. 1787, no. 5, pp. 502–517, 2009. View at Publisher · View at Google Scholar · View at Scopus
  161. C. A. Ingraham, L. S. Burwell, J. Skalska et al., “NDUFS4: creation of a mouse model mimicking a Complex I disorder,” Mitochondrion, vol. 9, no. 3, pp. 204–210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. L. Van Den Heuvel, W. Ruitenbeek, R. Smeets et al., “Demonstration of a new pathogenic mutation in human complex I deficiency: a 5-bp duplication in the nuclear gene encoding the 18-kD (AQDQ) subunit,” American Journal of Human Genetics, vol. 62, no. 2, pp. 262–268, 1998. View at Publisher · View at Google Scholar · View at Scopus
  163. S. Papa, S. Scacco, A. M. Sardanelli et al., “Mutation in the NDUFS4 gene of complex I abolishes cAMP-dependent activation of the complex in a child with fatal neurological syndrome,” FEBS Letters, vol. 489, no. 2-3, pp. 259–262, 2001. View at Publisher · View at Google Scholar · View at Scopus
  164. V. Petruzzella, R. Vergari, I. Puzziferri et al., “A nonsense mutation in the NDUFS4 gene encoding the 18 kDA (AQDQ) subunit of complex I abolishes assembly and activity of the complex in a patient with Leigh-like syndrome,” Human Molecular Genetics, vol. 10, no. 5, pp. 529–535, 2001. View at Google Scholar · View at Scopus
  165. S. Scacco, V. Petruzzella, S. Budde et al., “Pathological mutations of the human NDUFS4 gene of the 18-kDa (AQDQ) subunit of complex I affect the expression of the protein and the assembly and function of the complex,” Journal of Biological Chemistry, vol. 278, no. 45, pp. 44161–44167, 2003. View at Publisher · View at Google Scholar · View at Scopus
  166. E. Leshinsky-Silver, A. S. Lebre, L. Minai et al., “NDUFS4 mutations cause Leigh syndrome with predominant brainstem involvement,” Molecular Genetics and Metabolism, vol. 97, no. 3, pp. 185–189, 2009. View at Publisher · View at Google Scholar · View at Scopus
  167. E. H. Meyer, T. Tomaz, A. J. Carroll et al., “Remodeled respiration in ndufs4 with low phosphorylation efficiency suppresses Arabidopsis germination and growth and alters control of metabolism at night,” Plant Physiology, vol. 151, pp. 603–619, 2009. View at Google Scholar