Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 902351, 7 pages
http://dx.doi.org/10.1155/2012/902351
Research Article

Treatment with Aqueous Extract from Croton cajucara Benth Reduces Hepatic Oxidative Stress in Streptozotocin-Diabetic Rats

1Post-Graduation Program in Medical Sciences, Medical School, Federal University of Rio Grande do Sul (UFRGS), 90035-903 Porto Alegre, RS, Brazil
2Research Center, Hospital de Clínicas de Porto Alegre, Federal University of Rio Grande do Sul (UFRGS), 90035-903 Porto Alegre, RS, Brazil
3Physiotherapy Course, Catholic University of Pelotas (UCPEL), Porto Alegre, RS, Brazil
4Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, RS, Brazil
5Lutheran University of Brazil, 92425-900 Canoas, RS, Brazil
6State University of Rio Grande do Sul Porto Alegre, 90010-191 Porto Alegre, RS, Brazil

Received 12 March 2012; Revised 1 May 2012; Accepted 7 May 2012

Academic Editor: Sandro Massao Hirabara

Copyright © 2012 Graziella Ramos Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. American Diabetes Association, “Standards of care for diabetes,” Diabetes Care, vol. 17, no. 12, pp. 1514–1522, 1994. View at Google Scholar · View at Scopus
  2. J. S. Johansen, A. K. Harris, D. J. Rychly, and A. Ergul, “Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical pratice,” Cardiovascular Diabetology, vol. 4, article 5, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. L. Pari and R. Saravanan, “Beneficial effect of succinic acid monoethyl ester on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-nicotinamide induced type 2 diabetes,” Chemico-Biological Interactions, vol. 169, no. 1, pp. 15–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. A. C. Maritim, R. A. Sanders, and J. B. Watkins, “Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats,” Journal of Nutritional Biochemistry, vol. 14, no. 5, pp. 288–294, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. G. Baydas, H. Canatan, and A. Turkoglu, “Comparative analysis of the protective effects of melatonin and vitamin E on streptozocin-induced diabetes mellitus,” Journal of Pineal Research, vol. 32, no. 4, pp. 225–230, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. J. L. Evans, I. D. Goldfine, B. A. Maddux, and G. M. Grodsky, “Are oxidative stress—activated signaling pathways mediators of insulin resistance and β-cell dysfunction?” Diabetes, vol. 52, no. 1, pp. 1–8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Schiekofer, G. Galasso, M. Andrassy, T. Aprahamian, J. Schneider, and E. Rocnik, “Glucose control with insulin results in reduction of NF-κB-binding activity in mononuclear blood cells of patients with recently manifested type 1 diabetes,” Diabetes, Obesity and Metabolism, vol. 8, no. 5, pp. 473–482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. M. J. Moshi, “Current and future prospects of integrating traditional and alternative medicine in the management of diseases in Tanzania,” Tanzania Health Research Bulletin, vol. 7, no. 3, pp. 159–167, 2005. View at Google Scholar · View at Scopus
  9. M. E. Van Den Berg, Plantas Medicinais na Amazônia—Contribuição ao seu Conhecimento Sistemático, 1982.
  10. L. C. Di Stasi, E. M. G. Santos, and C. M. Santos, Hiruma-Lima CA. Plantas Medicinais da Amazônia, 1989.
  11. A. M. Luna Costa, J. C. Silva, A. R. Campos, V. S. Rao, and M. A. Maciel, “Pinto AC Antioestrogenic effect of trans-dehydrocrotonin, a nor-clerodane diterpene from Croton cajucara Benth in rats,” Phytotherapy Research Journal, vol. 13, pp. 689–691, 1999. View at Google Scholar
  12. M. Tieppo, M. Porawski, M. Salvador et al., “Croton cajucara BENTH. Leaf extract scavenges the stable free radical DPPH and protects against oxidative stress induced by paraquat,” Biological and Pharmaceutical Bulletin, vol. 29, no. 1, pp. 161–165, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Dey and K. Swaminathan, “Hyperglycemia-induced mitochondrial alterations in liver,” Life Sciences, vol. 87, no. 7-8, pp. 197–214, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. J. B. Harbone, Phytochemical Methods, Clarendon Press, Oxford, UK, 1998.
  15. H. Wagner and S. Bladt, Plant Drug Analysis: A Thin Layer Chromatography Atlas, Springer, Berlin, Germany, 1996.
  16. R. W. Owen, T. Wimonwatwatee, B. Spiegelhalder, and H. Bartsch, “A high performance liquid chromatography system for quantification of hydroxyl radical formation by determination of dihydroxy benzoic acids,” European Journal of Cancer Prevention, vol. 5, no. 4, pp. 233–240, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. R. W. Owen, A. Giacosa, W. E. Hull, R. Haubner, B. Spiegelhalder, and H. Bartsch, “The antioxidant/anticancer potential of phenolic compounds isolated from olive oil,” European Journal of Cancer, vol. 36, no. 10, pp. 1235–1247, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. R. W. Owen, R. Haubner, W. Mier et al., “Isolation, structure elucidation and antioxidant potential of the major phenolic and flavonoid compounds in brined olive drupes,” Food and Chemical Toxicology, vol. 41, no. 5, pp. 703–717, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. T. Yamaguchi, H. Takamura, T. Matoba, and J. Terao, “HPLC method for evaluation of the free radical-scavenging activity of foods by using 1,1-Diphenyl-2-picrylhydrazyl,” Bioscience, Biotechnology and Biochemistry, vol. 62, no. 6, pp. 1201–1204, 1998. View at Google Scholar · View at Scopus
  20. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin phenol reagent,” The Journal of Biological Chemistry, vol. 193, no. 1, pp. 265–275, 1951. View at Google Scholar · View at Scopus
  21. J. A. Buege and S. D. Aust, “Microsomal lipid peroxidation,” Methods in Enzymology, vol. 52, pp. 302–310, 1978. View at Publisher · View at Google Scholar · View at Scopus
  22. H. P. Misra and I. Fridovich, “The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase,” Journal of Biological Chemistry, vol. 247, no. 10, pp. 3170–3175, 1972. View at Google Scholar · View at Scopus
  23. A. Boveris and B. Chance, “The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen,” Biochemical Journal, vol. 134, no. 3, pp. 707–716, 1973. View at Google Scholar · View at Scopus
  24. A. Kolberg, T. G. Rosa, M. T. Puhl et al., “Low expression of MRP1/GS-X pump ATPase in lymphocytes of Walker 256 tumour-bearing rats is associated with cyclopentenone prostaglandin accumulation and cancer immunodeficiency,” Cell Biochemistry and Function, vol. 24, no. 1, pp. 23–39, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. M. B. Gutiérrez, B. S. Miguel, C. Villares, J. G. Gallego, and M. J. Tuñón, “Oxidative stress induced by Cremophor EL is not accompanied by changes in NF-κB activation or iNOS expression,” Toxicology, vol. 222, no. 1-2, pp. 125–131, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. M. F. Richter, J. M. Boeira, D. J. Moura, J. A. P. Henriques, and J. Saffi, “Antioxidant properties of β-carboline alkaloids are related to their antimutagenic and antigenotoxic activities,” Mutagenesis, vol. 22, no. 4, pp. 293–302, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. D. G. Soares, A. C. Andreazza, and M. Salvador, “Sequestering ability of butylated hydroxytoluene, propyl gallate, resveratrol, and vitamins C and E against ABTS, DPPH, and hydroxyl free radicals in chemical and biological systems,” Journal of Agricultural and Food Chemistry, vol. 51, no. 4, pp. 1077–1080, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Lehuédé, B. Fauconneau, L. Barrier, M. Ourakow, A. Piriou, and J. M. Vierfond, “Synthesis and antioxidant activity of new tetraarylpyrroles,” European Journal of Medicinal Chemistry, vol. 34, no. 11, pp. 991–996, 1999. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Hussain, Z. Ismail, A. Sadikun, and P. Ibrahim, “Antioxidant, anti-TB activities, phenolic and amide contents of standardised extracts of Piper sarmentosum Roxb,” Natural Product Research, vol. 23, no. 3, pp. 238–249, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. V. Costa, M. L. B. Pinheiro, A. Barison et al., “Alkaloids from the bark of Guatteria hispida and their evaluation as antioxidant and antimicrobial agents,” Journal of Natural Products, vol. 73, no. 6, pp. 1180–1183, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. G. M. Nardi, R. Felippi, S. DalBó et al., “Anti-inflammatory and antioxidant effects of Croton celtidifolius bark,” Phytomedicine, vol. 10, no. 2-3, pp. 176–184, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Nazemiyeh, E. M. Kazemi, K. Zare, M. Jodari, L. Nahar, and S. D. Sarker, “Free radical scavengers from the aerial parts of Euphorbia petiolata,” Journal of Natural Medicines, vol. 64, no. 2, pp. 187–190, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Kajimoto and H. Kaneto, “Role of oxidative stress in pancreatic β-cell dysfunction,” Annals of the New York Academy of Sciences, vol. 1011, pp. 168–176, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. J. W. Baynes, “Role of oxidative stress in development of complications in diabetes,” Diabetes, vol. 40, no. 4, pp. 405–412, 1991. View at Google Scholar · View at Scopus
  35. F. Rivera-Ramírez, G. N. Escalona-Cardoso, L. Garduño-Siciliano, C. Galaviz-Hernández, and N. Paniagua-Castro, “Antiobesity and hypoglycaemic effects of aqueous extract of Ibervillea sonorae in mice fed a high-fat diet with fructose,” Journal of Biomedicine and Biotechnology, vol. 2011, Article ID 968984, 6 pages, 2011. View at Publisher · View at Google Scholar
  36. J. H. Tsai, H. W. Chen, Y. W. Chen, J. Y. Liu, and C. K. Lii, “The protection of hepatocyte cells from the effects of oxidative stress by treatment with vitamin e in conjunction with DTT,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 486267, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. O. Coskun, M. Kanter, A. Korkmaz, and S. Oter, “Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas,” Pharmacological Research, vol. 51, no. 2, pp. 117–123, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. M. A. M. Maciel, A. C. Pinto, A. C. Arruda et al., “Ethnopharmacology, phytochemistry and pharmacology: a successful combination in the study of Croton cajucara,” Journal of Ethnopharmacology, vol. 70, no. 1, pp. 41–55, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. A. S. Dias, M. Porawski, M. Alonso, N. Marroni, P. S. Collado, and J. González-Gallego, “Quercetin decreases oxidative stress, NF-κB activation, and iNOS overexpression in liver of streptozotocin-induced diabetic rats,” Journal of Nutrition, vol. 135, no. 10, pp. 2299–2304, 2005. View at Google Scholar · View at Scopus
  40. F. C. Di Naso, A. Simoes Dias, M. Porawski, and N. A. P. Marroni, “Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes,” Experimental Diabetes Research, vol. 2011, Article ID 754132, 6 pages, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. F. C. Di Naso, R. N. de Mello, S. Bona et al., “Effect of Agaricus blazei Murill on the pulmonary tissue of animals with streptozotocin-induced diabetes,” Experimental diabetes research, vol. 2010, Article ID 543926, 8 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  42. R. M. Silva, F. A. Santos, V. S. N. Rao, M. A. Maciel, and A. C. Pinto, “Blood glucose- and triglyceride-lowering effect of trans-dehydrocrotonin, a diterpene from Croton cajucara benth., in rats,” Diabetes, Obesity and Metabolism, vol. 3, no. 6, pp. 452–456, 2001. View at Publisher · View at Google Scholar · View at Scopus
  43. R. A. Sanders, F. M. Rauscher, and J. B. Watkins, “Effects of Quercetin on antioxidant defense in streptozotocin-induced diabetic rats,” Journal of Biochemical and Molecular Toxicology, vol. 15, no. 3, pp. 143–149, 2001. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Y. Cho, J. Y. Park, E. M. Park et al., “Alternation of hepatic antioxidant enzyme activities and lipid profile in streptozotocin-induced diabetic rats by supplementation of dandelion water extract,” Clinica Chimica Acta, vol. 317, no. 1-2, pp. 109–117, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. M. Vijayakumar, R. Govindarajan, G. M. M. Rao et al., “Action of Hygrophila auriculata against streptozotocin-induced oxidative stress,” Journal of Ethnopharmacology, vol. 104, no. 3, pp. 356–361, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. U. Chakraborty and H. Das, “Antidiabetic and antioxidant activities of cinnamomum tamala leaf extracts in Stz-Treated diabetic rats,” Global Journal of Biotechnology & Biochemistry, vol. 5, pp. 12–18, 2010. View at Google Scholar
  47. P. J. Barnes and M. Karin, “Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases,” The New England Journal of Medicine, vol. 336, no. 15, pp. 1066–1071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  48. E. Maioli, L. Greci, K. Soucek et al., “Rottlerin inhibits ROS formation and prevents NFB activation in MCF-7 and HT-29 cells,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 742936, 7 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  49. G. Rodrigues, E. Marcolin, S. Bona, M. Porawski, M. Lehmann, and N. P. Marroni, “Hepatics alterations and genotoxic effects of Croton cajucara Benth (SACACA) in diabetic rats,” Arquivos de Gastroenterologia, vol. 47, no. 3, pp. 301–305, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. A. R. Agner, M. A. Maciel, A. C. Pinto, S. G. Pamplona, I. M. Colus, and I. M. Cólus, “Investigation of genotoxic activity of transdehydrocrotonin, a clerodane diterpene from Croton cajucara,” Teratog Carcinog Mutagen, vol. 19, pp. 377–384, 1999. View at Google Scholar