Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 929803, 12 pages
http://dx.doi.org/10.1155/2012/929803
Research Article

Mannose-Binding Lectin Binds to Amyloid 𝜷 Protein and Modulates Inflammation

1Divisions of Neuroradiology and Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
2Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
3Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
4Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
5Department of Anesthesiology, Perioperative and Pain Medicine, Center for Experimental Therapeutics and Reperfusion Injury, Harvard Institute of Medicine, Harvard Medical School, Boston, MA 02115, USA

Received 15 September 2011; Revised 26 November 2011; Accepted 4 December 2011

Academic Editor: Misao Matsushita

Copyright © 2012 Mykol Larvie et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Takahashi, W. C. Chang, M. Takahashi et al., “Mannose-binding lectin and its associated proteases (MASPs) mediate coagulation and its deficiency is a risk factor in developing complications from infection, including disseminated intravascular coagulation,” Immunobiology, vol. 216, no. 1-2, pp. 96–102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Moller-Kristensen, M. R. Hamblin, S. Thiel, J. C. Jensenius, and K. Takahashi, “Burn injury reveals altered phenotype in mannan-binding lectin-deficient mice,” Journal of Investigative Dermatology, vol. 127, no. 6, pp. 1524–1531, 2007. View at Publisher · View at Google Scholar
  3. K. Takahashi, W. E. Ip, I. C. Michelow, and R. A. Ezekowitz, “The mannose-binding lectin: a prototypic pattern recognition molecule,” Current Opinion in Immunology, vol. 18, no. 1, pp. 16–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. Uemura, M. Saka, T. Nakagawa et al., “L-MBP is expressed in epithelial cells of mouse small intestine,” Journal of Immunology, vol. 169, no. 12, pp. 6945–6950, 2002. View at Google Scholar · View at Scopus
  5. D. L. Grasso, L. Segat, E. Zocconi, O. Radillo, C. Trevisiol, and S. Crovella, “MBL expression in patients with recurrent tonsillitis,” International Journal of Pediatric Otorhinolaryngology, vol. 73, no. 11, pp. 1550–1553, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. R. Bulla, F. de Seta, O. Radillo et al., “Mannose-binding lectin is produced by vaginal epithelial cells and its level in the vaginal fluid is influenced by progesterone,” Molecular Immunology, vol. 48, no. 1–3, pp. 281–286, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. W. C. Chang, M. R. White, P. Moyo et al., “Lack of the pattern recognition molecule mannose-binding lectin increases susceptibility to influenza A virus infection,” BMC Immunology, vol. 11, no. 1, p. 64, 2010. View at Publisher · View at Google Scholar · View at Scopus
  8. M. L. Lokitz, W. Zhang, M. Bashir et al., “Ultraviolet-B recruits mannose-binding lectin into skin from non-cutaneous sources,” Journal of Investigative Dermatology, vol. 125, no. 1, pp. 166–173, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. K. J. Fidler, T. N. Hilliard, A. Bush et al., “Mannose-binding lectin is present in the infected airway: a possible pulmonary defence mechanism,” Thorax, vol. 64, no. 2, pp. 150–155, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. P. H. Yager, Z. You, T. Qin et al., “Mannose binding lectin gene deficiency increases susceptibility to traumatic brain injury in mice,” Journal of Cerebral Blood Flow and Metabolism, vol. 28, no. 5, pp. 1030–1039, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Shi, K. Takahashi, J. Dundee et al., “Mannose-binding lectin-deficient mice are susceptible to infection with Staphylococcus aureus,” Journal of Experimental Medicine, vol. 199, no. 10, pp. 1379–1390, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Møller-Kristensen, W. K. Ip, L. Shi et al., “Deficiency of mannose-binding lectin greatly increases susceptibility to postburn infection with Pseudomonas aeruginosa,” Journal of Immunology, vol. 176, no. 3, pp. 1769–1775, 2006. View at Google Scholar · View at Scopus
  13. C. T. Esmon, “Crosstalk between inflammation and thrombosis,” Maturitas, vol. 47, no. 4, pp. 305–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. R. Bobowiec, J. Wessely-Szponder, and P. Hola, “Crosstalk between coagulation and inflammation in mastitis and metritis in dairy cows,” Acta Veterinaria Hungarica, vol. 57, no. 2, pp. 283–293, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Super, S. D. Gillies, S. Foley et al., “Distinct and overlapping functions of allelic forms of human mannose binding protein,” Nature Genetics, vol. 2, no. 1, pp. 50–55, 1992. View at Google Scholar · View at Scopus
  16. H. O. Madsen, P. Garred, S. Thiel et al., “Interplay between promoter and structural gene variants control basal serum level of mannan-binding protein,” Journal of Immunology, vol. 155, no. 6, pp. 3013–3020, 1995. View at Google Scholar · View at Scopus
  17. H. O. Madsen, P. Garred, J. A. Kurtzhals et al., “A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein,” Immunogenetics, vol. 40, no. 1, pp. 37–44, 1994. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Garred, F. Larsen, H. O. Madsen, and C. Koch, “Mannose-binding lectin deficiency—revisited,” Molecular Immunology, vol. 40, no. 2–4, pp. 73–84, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. R. Steffensen, S. Thiel, K. Varming, C. Jersild, and J. C. Jensenius, “Detection of structural gene mutations and promoter polymorphisms in the mannan-binding lectin (MBL) gene by polymerase chain reaction with sequence-specific primers,” Journal of Immunological Methods, vol. 241, no. 1-2, pp. 33–42, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. H. O. Madsen, M. L. Satz, B. Hogh, A. Svejgaard, and P. Garred, “Different molecular events result in low protein levels of mannan- binding lectin in populations from Southeast Africa and South America,” Journal of Immunology, vol. 161, no. 6, pp. 3169–3175, 1998. View at Google Scholar · View at Scopus
  21. P. Garred, F. Larsen, J. Seyfarth, R. Fujita, and H. O. Madsen, “Mannose-binding lectin and its genetic variants,” Genes and Immunity, vol. 7, no. 2, pp. 85–94, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. C. D. Collard, S. K. Shernan, A. A. Fox et al., “The MBL2 "LYQA secretor" haplotype is an independent predictor of postoperative myocardial infarction in whites undergoing coronary artery bypass graft surgery,” Circulation, vol. 116, 11, pp. I106–I112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. W. K. Ip, Y. F. To, S. K. Cheng, and Y. L. Lau, “Serum mannose-binding lectin levels and mbl2 gene polymorphisms in different age and gender groups of southern Chinese adults,” Scandinavian Journal of Immunology, vol. 59, no. 3, pp. 310–314, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Takahashi and R. A. Ezekowitz, “The role of the mannose-binding lectin in innate immunity,” Clinical Infectious Diseases, vol. 41, supplement 7, pp. S440–S444, 2005. View at Publisher · View at Google Scholar · View at Scopus
  25. K. K. Singh, A. Lieser, P. K. Ruan, T. Fenton, and S. A. Spector, “An age-dependent association of mannose-binding lectin-2 genetic variants on HIV-1-related disease in children,” Journal of Allergy and Clinical Immunology, vol. 122, no. 1, pp. 173–180, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. W. C. van der Zwet, A. Catsburg, R. M. van Elburg, P. H. Savelkoul, and C. M. Vandenbroucke-Grauls, “Mannose-binding lectin (MBL) genotype in relation to risk of nosocomial infection in pre-term neonates in the neonatal intensive care unit,” Clinical Microbiology and Infection, vol. 14, no. 2, pp. 130–135, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. C. G. Mullighan, S. L. Heatley, S. Danner et al., “Mannose-binding lectin status is associated with risk of major infection following myeloablative sibling allogeneic hematopoietic stem cell transplantation,” Blood, vol. 112, no. 5, pp. 2120–2128, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. C. T. Tran, K. Kjeldsen, S. Haunso, N. Høiby, H. K. Johansen, and M. Christiansen, “Mannan-binding lectin is a determinant of survival in infective endocarditis,” Clinical and Experimental Immunology, vol. 148, no. 1, pp. 101–105, 2007. View at Publisher · View at Google Scholar
  29. J. Faber, T. Schuessler, A. Finn et al., “Age-dependent association of human mannose-binding lectin mutations with susceptibility to invasive meningococcal disease in childhood,” Pediatric Infectious Disease Journal, vol. 26, no. 3, pp. 243–246, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Gadjeva, S. R. Paludan, S. Thiel et al., “Mannan-binding lectin modulates the response to HSV-2 infection,” Clinical and Experimental Immunology, vol. 138, no. 2, pp. 304–311, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Krarup, R. Wallis, J. S. Presanis, P. Gál, and R. B. Sim, “Simultaneous activation of complement and coagulation by MBL-associated serine protease 2,” PLoS ONE, vol. 2, no. 7, article e623, 2007. View at Publisher · View at Google Scholar · View at Scopus
  32. W. C. Chang, K. L. Hartshorn, M. R. White et al., “Recombinant chimeric lectins consisting of mannose-binding lectin and L-ficolin are potent inhibitors of influenza A virus compared with mannose-binding lectin,” Biochemical Pharmacology, vol. 81, no. 3, pp. 388–395, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. R. Dahl, S. Thiel, M. Matsushita et al., “MASP-3 and its association with distinct complexes of the mannan-binding lectin complement activation pathway,” Immunity, vol. 15, no. 1, pp. 127–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. K. Tateishi, T. Kanemoto, T. Fujita, and M. Matsushita, “Characterization of the complex between mannose-binding lectin trimer and mannose-binding lectin-associated serine proteases,” Microbiology and Immunology, vol. 55, no. 6, pp. 427–433, 2011. View at Publisher · View at Google Scholar
  35. J. S. Presanis, K. Hajela, G. Ambrus, P. Gál, and R. B. Sim, “Differential substrate and inhibitor profiles for human MASP-1 and MASP-2,” Molecular Immunology, vol. 40, no. 13, pp. 921–929, 2004. View at Publisher · View at Google Scholar · View at Scopus
  36. K. C. Gulla, K. Gupta, A. Krarup et al., “Activation of mannan-binding lectin-associated serine proteases leads to generation of a fibrin clot,” Immunology, vol. 129, no. 4, pp. 482–495, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. Endo, N. Nakazawa, D. Iwaki, M. Takahashi, M. Matsushita, and T. Fujita, “Interactions of ficolin and mannose-binding lectin with fibrinogen/fibrin augment the lectin complement pathway,” Journal of Innate Immunity, vol. 2, no. 1, pp. 33–42, 2010. View at Google Scholar
  38. J. A. Hoffmann, F. C. Kafatos, C. A. Janeway, and R. A. Ezekowitz, “Phylogenetic perspectives in innate immunity,” Science, vol. 284, no. 5418, pp. 1313–1318, 1999. View at Publisher · View at Google Scholar · View at Scopus
  39. D. A. Fraser and A. J. Tenner, “Directing an appropriate immune response: the role of defense collagens and other soluble pattern recognition molecules,” Current Drug Targets, vol. 9, no. 2, pp. 113–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. J. S. Haurum, S. Thiel, H. P. Haagsman, S. B. Laursen, B. Larsen, and J. C. Jensenius, “Studies on the carbohydrate-binding characteristics of human pulmonary surfactant-associated protein A and comparison with two other collectins: mannan-binding protein and conglutinin,” Biochemical Journal, vol. 293, no. 3, pp. 873–878, 1993. View at Google Scholar · View at Scopus
  41. T. Kawasaki, R. Etoh, and I. Yamashina, “Isolation and characterization of a mannan-binding protein from rabbit liver,” Biochemical and Biophysical Research Communications, vol. 81, no. 3, pp. 1018–1024, 1978. View at Google Scholar · View at Scopus
  42. M. M. Estabrook, D. L. Jack, N. J. Klein, and G. A. Jarvis, “Mannose-Binding Lectin Binds to Two Major Outer Membrane Proteins, Opacity Protein and Porin, of Neisseria meningitidis,” Journal of Immunology, vol. 172, no. 6, pp. 3784–3792, 2004. View at Google Scholar · View at Scopus
  43. S. A. Linehan, L. Martínez-Pomares, and S. Gordon, “Macrophage lectins in host defence,” Microbes and Infection, vol. 2, no. 3, pp. 279–288, 2000. View at Publisher · View at Google Scholar · View at Scopus
  44. N. Harris, M. Super, M. Rits, G. Chang, and R. A. B. Ezekowitz, “Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-γ occurs at the level of transcription,” Blood, vol. 80, no. 9, pp. 2363–2373, 1992. View at Google Scholar · View at Scopus
  45. C. Leteux, W. Chai, R. W. Loveless et al., “The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates A and B and sulfated oligosaccharides of blood group Lewisa and Lewis(x) types in addition to the sulfated N-glycans of lutropin,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1117–1126, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. D. Fiete, M. C. Beranek, and J. U. Baenziger, “The macrophage/endothelial cell mannose receptor cDNA encodes a protein that binds oligosaccharides terminating with SO4-4-GalNAcβ1,4GIcNAcaβ or Man at independent sites,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 21, pp. 11256–11261, 1997. View at Google Scholar · View at Scopus
  47. Y. Liu, A. J. Chirino, Z. Misulovin et al., “Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand,” Journal of Experimental Medicine, vol. 191, no. 7, pp. 1105–1116, 2000. View at Publisher · View at Google Scholar · View at Scopus
  48. R. A. Ezekowitz, L. E. Day, and G. A. Herman, “A human mannose-binding protein is an acute-phase reactant that shares sequence homology with other vertebrate lectins,” Journal of Experimental Medicine, vol. 167, no. 3, pp. 1034–1046, 1988. View at Google Scholar · View at Scopus
  49. H. E. Murrey and L. C. Hsieh-Wilson, “The chemical neurobiology of carbohydrates,” Chemical Reviews, vol. 108, no. 5, pp. 1708–1731, 2008. View at Publisher · View at Google Scholar · View at Scopus
  50. D. J. Selkoe, “The molecular pathology of Alzheimer's disease,” Neuron, vol. 6, no. 4, pp. 487–498, 1991. View at Publisher · View at Google Scholar · View at Scopus
  51. J. A. Hardy and G. A. Higgins, “Alzheimer's disease: the amyloid cascade hypothesis,” Science, vol. 256, no. 5054, pp. 184–185, 1992. View at Google Scholar · View at Scopus
  52. K. G. Mawuenyega, W. Sigurdson, V. Ovod et al., “Decreased clearance of CNS β-amyloid in Alzheimer's disease,” Science, vol. 330, no. 6012, p. 1774, 2010. View at Publisher · View at Google Scholar · View at Scopus
  53. P. F. Forrester, P. F. Lloyd, and C. H. Stuart, “Synthesis of L-fucose 2-, 3-, and 4-sulphates,” Carbohydrate Research, vol. 49, pp. 175–184, 1976. View at Google Scholar · View at Scopus
  54. K. L. Hartshorn, M. Collamer, M. Auerbach, J. B. Myers, N. Pavlotsky, and A. I. Tauber, “Effects of influenza A virus on human neutrophil calcium metabolism,” Journal of Immunology, vol. 141, no. 4, pp. 1295–1301, 1988. View at Google Scholar · View at Scopus
  55. C. D. Collard, M. C. Montalto, W. R. Reenstra, J. A. Buras, and G. L. Stahl, “Endothelial oxidative stress activates the lectin complement pathway: role of cytokeratin 1,” American Journal of Pathology, vol. 159, no. 3, pp. 1045–1054, 2001. View at Google Scholar · View at Scopus
  56. S. Hansen, S. Thiel, A. Willis, U. Holmskov, and J. C. Jensenius, “Purification and characterization of two mannan-binding lectins from mouse serum,” Journal of Immunology, vol. 164, no. 5, pp. 2610–2618, 2000. View at Google Scholar · View at Scopus
  57. W. K. Eddie Ip, K. Takahashi, K. J. Moore, L. M. Stuart, and R. A. Ezekowitz, “Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 169–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Tobinick, “Tumour necrosis factor modulation for treatment of Alzheimer's disease: rationale and current evidence,” CNS Drugs, vol. 23, no. 9, pp. 713–725, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. H. A. Smits, N. M. de Vos, J. W. Wat, T. van der Bruggen, J. Verhoef, and H. S. Nottet, “Intracellular pathways involved in TNF-α and superoxide anion release by Aβ(1-42)-stimulated primary human macrophages,” Journal of Neuroimmunology, vol. 115, no. 1-2, pp. 144–151, 2001. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Kase, Y. Suzuki, T. Kawai et al., “Human mannan-binding lectin inhibits the infection of influenza a virus without complement,” Immunology, vol. 97, no. 3, pp. 385–392, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. W. K. Eddie Ip, K. Takahashi, K. J. Moore, L. M. Stuart, and R. A. Ezekowitz, “Mannose-binding lectin enhances Toll-like receptors 2 and 6 signaling from the phagosome,” Journal of Experimental Medicine, vol. 205, no. 1, pp. 169–181, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. Ben-Neriah and M. Karin, “Inflammation meets cancer, with NF-κB as the matchmaker,” Nature Immunology, vol. 12, no. 8, pp. 715–723, 2011. View at Publisher · View at Google Scholar
  63. W. K. Ip, K. Takahashi, R. A. Ezekowitz, and L. M. Stuart, “Mannose-binding lectin and innate immunity,” Immunological Reviews, vol. 230, no. 1, pp. 9–21, 2009. View at Publisher · View at Google Scholar · View at Scopus
  64. L. Freeman, R. Posthuma, L. Gordon, and W. Marx, “Determination of tissue heparin,” Archives of Biochemistry and Biophysics, vol. 70, no. 1, pp. 169–177, 1957. View at Google Scholar · View at Scopus
  65. L. Bergamaschini, C. Donarini, E. Rossi, A. de Luigi, C. Vergani, and M. G. de Simoni, “Heparin attenuates cytotoxic and inflammatory activity of Alzheimer amyloid-β in vitro,” Neurobiology of Aging, vol. 23, no. 4, pp. 531–536, 2002. View at Publisher · View at Google Scholar · View at Scopus
  66. N. M. Timmer, L. van Dijk, C. E. der Zee, A. Kiliaan, R. M. van de Waal, and M. M. Verbeek, “Enoxaparin treatment administered at both early and late stages of amyloid β deposition improves cognition of APPswe/PS1dE9 mice with differential effects on brain Aβ levels,” Neurobiology of Disease, vol. 40, no. 1, pp. 340–347, 2010. View at Publisher · View at Google Scholar · View at Scopus
  67. H. Cui, A. C. Hung, D. W. Klaver et al., “Effects of heparin and enoxaparin on APP processing and aβ production in primary cortical neurons from Tg2576 mice,” PLoS ONE, vol. 6, no. 7, article e23007, 2011. View at Publisher · View at Google Scholar
  68. E. Sandwall, P. O'Callaghan, X. Zhang, U. Lindahl, L. Lannfelt, and J. P. Li, “Heparan sulfate mediates amyloid-beta internalization and cytotoxicity,” Glycobiology, vol. 20, no. 5, pp. 533–541, 2010. View at Publisher · View at Google Scholar · View at Scopus
  69. D. Klaver, A. C. Hung, R. Gasperini, L. Foa, M. I. Aguilar, and D. H. Small, “Effect of heparin on APP metabolism and Aβ production in cortical neurons,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 187–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. X. Ji, G. G. Olinger, S. Aris, Y. Chen, H. Gewurz, and G. T. Spear, “Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralization,” Journal of General Virology, vol. 86, no. 9, pp. 2535–2542, 2005. View at Publisher · View at Google Scholar · View at Scopus
  71. A. Kurz and R. Perneczky, “Amyloid clearance as a treatment target against Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 24, supplement 2, pp. 61–73, 2011. View at Publisher · View at Google Scholar