Table of Contents Author Guidelines Submit a Manuscript
Journal of Biomedicine and Biotechnology
Volume 2012, Article ID 976972, 10 pages
http://dx.doi.org/10.1155/2012/976972
Research Article

Prevalence of Adhesion and Regulation of Biofilm-Related Genes in Different Clones of Staphylococcus aureus

1Laboratory of Medical Microbiology and Parasitology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Selangor 43400 Serdang, Malaysia
2Department of Medical Microbiology, Basrah University, Basrah, Iraq
3Laboratory of Marine Science and Aquaculture, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400 Serdang, Malaysia
4Department of Microbiology and Immunology, Arak University of Medical Sciences, Arak, Iran
5Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Putra Malaysia, Selangor 43400 Serdang, Malaysia

Received 25 February 2012; Revised 10 March 2012; Accepted 4 April 2012

Academic Editor: Daniele Daffonchio

Copyright © 2012 Salman Sahab Atshan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. W. Costerton, P. S. Stewart, and E. P. Greenberg, “Bacterial biofilms: a common cause of persistent infections,” Science, vol. 284, no. 5418, pp. 1318–1322, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. Y. S. Seo, D. Y. Lee, N. Rayamahji, M. L. Kang, and H. S. Yoo, “Biofilm-forming associated genotypic and phenotypic characteristics of Staphylococcus spp. Isolated from animals and air,” Research in Veterinary Science, vol. 85, no. 3, pp. 433–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Chaieb, K. Mahdouani, and A. Bakhrouf, “Detection of icaA and icaD loci by polymerase chain reaction and biofilm formation by Staphylococcus epidermidis isolated from dialysate and needles in a dialysis unit,” Journal of Hospital Infection, vol. 61, no. 3, pp. 225–230, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Cucarella, C. Solano, J. Valle, B. Amorena, I. Lasa, and J. R. Penades, “Bap, a Staphylococcus aureus surface protein involved in biofilm formation,” Journal of Bacteriology, vol. 183, no. 9, pp. 2888–2896, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Cucarella, M. A. Tormo, E. Knecht et al., “Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process,” Infection and Immunity, vol. 70, no. 6, pp. 3180–3186, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. H. Rohde, J. K. M. Knobloch, M. A. Horstkotte et al., “Correlation of Staphylococcus aureus icaADBC genotype and biofilm expression phenotype,” Journal of Clinical Microbiology, vol. 39, no. 12, pp. 4595–4596, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Kiem, W. S. Oh, K. R. Peck et al., “Phase variation of biofilm formation in Staphylococcus aureus by IS256 insertion and its impact on the capacity adhering to polyurethane surface,” Journal of Korean Medical Science, vol. 19, no. 6, pp. 779–782, 2004. View at Google Scholar · View at Scopus
  8. A. Tristan, L. Ying, M. Bes, J. Etienne, F. Vandenesch, and G. Lina, “Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections,” Journal of Clinical Microbiology, vol. 41, no. 9, pp. 4465–4467, 2003. View at Publisher · View at Google Scholar · View at Scopus
  9. D. Vancraeynest, K. Hermans, and F. Haesebrouck, “Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs,” Veterinary Microbiology, vol. 103, no. 3-4, pp. 241–247, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Montanaro, C. Renata Arciola, L. Baldassarri, and E. Borsetti, “Presence and expression of collagen adhesin gene (cna) and slime production in Staphylococcus aureus strains from orthopaedic prosthesis infections,” Biomaterials, vol. 20, no. 20, pp. 1945–1949, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Ghaznavi-Rad, M. N. Shamsudin, Z. Sekawi et al., “Predominance and emergence of clones of hospital-acquired methicillin-resistant Staphylococcus aureus in Malaysia,” Journal of Clinical Microbiology, vol. 48, no. 3, pp. 867–872, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Ghasemzadeh-Moghaddam, E. Ghaznavi-Rad, Z. Sekawi et al., “Methicillin-susceptible Staphylococcus aureus from clinical and community sources are genetically diverse,” International Journal of Medical Microbiology, vol. 7, pp. 505–549, 2010. View at Google Scholar · View at Scopus
  13. J. A. Wu, C. Kusuma, J. J. Mond, and J. F. Kokai-Kun, “Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces,” Antimicrobial Agents and Chemotherapy, vol. 47, no. 11, pp. 3407–3414, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. R. Arciola, L. Baldassarri, and L. Montanaro, “Presence of ica A and ica D genes and slime production in a collection of Staphylococcal strains from catheter-associated infections,” Journal of Clinical Microbiology, vol. 39, no. 6, pp. 2151–2156, 2001. View at Publisher · View at Google Scholar · View at Scopus
  15. N. S. Mariana, S. A. Salman, V. Neela, and S. Zamberi, “Evaluation of modified Congo red agar for detection of biofilm produced by clinical isolates of methicillin resistance Staphylococcus aureus,” African Journal of Microbiology Research, vol. 3, pp. 330–338, 2009. View at Google Scholar
  16. C. R. Arciola, D. Campoccia, L. Baldassarri et al., “Detection of biofilm formation in Staphylococcus epidermidis from implant infections. Comparison of a PCR-method that recognizes the presence of ica genes with two classic phenotypic methods,” Journal of Biomedical Materials Research A, vol. 76, no. 2, pp. 425–430, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Stepanović, D. Vuković, V. Hola et al., “Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci,” Acta Pathologica Microbiologica Scandinavica, vol. 115, no. 8, pp. 891–899, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. M. J. Guimaraes, L. Frank, Z. Albert, and M. Terrill, “Differential display by PCR: novel findings and applications,” Nucleic Acids Research, vol. 23, no. 10, pp. 1832–1833, 1995. View at Google Scholar · View at Scopus
  19. S. S. Atshan, N. S. Mariana, T. T. L. Leslie et al., “Improved method for the isolation of RNA from bacteria refractory to disruption, including S. aureus producing biofilm,” Gene, vol. 494, pp. 219–224, 2011. View at Google Scholar
  20. P. Vaudaux, H. Yasuda, M. I. Velazco et al., “Role of host and bacterial factors in modulating staphylococcal adhesion to implanted polymer surfaces,” Journal of Biomaterials Applications, vol. 5, no. 2, pp. 134–153, 1990. View at Google Scholar · View at Scopus
  21. P. Vasudevan, M. K. M. Nair, T. Annamalai, and K. S. Venkitanarayanan, “Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation,” Veterinary Microbiology, vol. 92, no. 1-2, pp. 179–185, 2003. View at Publisher · View at Google Scholar · View at Scopus
  22. D. Vancraeynest, K. Hermans, and F. Haesebrouck, “Genotypic and phenotypic screening of high and low virulence Staphylococcus aureus isolates from rabbits for biofilm formation and MSCRAMMs,” Veterinary Microbiology, vol. 103, no. 3-4, pp. 241–247, 2004. View at Publisher · View at Google Scholar · View at Scopus