Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 108794, 7 pages
Research Article

An Attempted Substitute Study of Total Skin Electron Therapy Technique by Using Helical Photon Tomotherapy with Helical Irradiation of the Total Skin Treatment: A Phantom Result

1Division of Radiation Oncology, Department of Radiology, Far Eastern Memorial Hospital, New Taipei City 220, Taiwan
2Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 404, Taiwan
3Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
4Department of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
5Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

Received 4 May 2013; Accepted 16 June 2013

Academic Editor: Tsair-Fwu Lee

Copyright © 2013 Chi-Ta Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


An anthropomorphic phantom was used to investigate a treatment technique and analyze the dose distributions for helical irradiation of the total skin (HITS) by helical tomotherapy (HT). Hypothetical bolus of thicknesses of 0, 10, and 15 mm was added around the phantom body to account for the dose homogeneity and setup uncertainty. A central core structure was assigned as a “complete block” to force the dose tangential delivery. HITS technique with prescribed dose ( ) of 36 Gy in 36 fractions was generated. The radiochromic EBT2 films were used for the dose measurements. The target region with 95.0% of the received by more than 95% of the PTV was obtained. The calculated mean doses for the organs at risk (OARs) were 4.69, 3.10, 3.20, and 2.94 Gy for the lung, heart, liver, and kidneys, respectively. The measurement doses on a phantom surface for a plan with 10 mm hypothetical bolus and bolus thicknesses of 0, 1, 2, and 3 mm are 89.5%, 111.4%, 116.9%, and 117.7% of , respectively. HITS can provide an accurate and uniform treatment dose in the skin with limited doses to OARs and is safe to replace a total skin electron beam regimen.