Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 109549, 9 pages
http://dx.doi.org/10.1155/2013/109549
Research Article

Position-Specific Analysis and Prediction of Protein Pupylation Sites Based on Multiple Features

1College of Computer Science and Information Technology, Northeast Normal University, 2555 Jingyue Street, Changchun 130117, China
2Key Laboratory of Intelligent Information Processing of Jilin Universities, Northeast Normal University, Changchun 130117, China

Received 25 April 2013; Revised 20 July 2013; Accepted 20 July 2013

Academic Editor: Bilal Alatas

Copyright © 2013 Xiaowei Zhao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. A. Festa, F. McAllister, M. J. Pearce et al., “Prokayrotic ubiquitin-like protein (Pup) proteome of Mycobacterium tuberculosis,” PLoS ONE, vol. 5, no. 1, Article ID e8589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. K. H. Darwin, “Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis,” Nature Reviews Microbiology, vol. 7, no. 7, pp. 485–491, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. C.-W. Tung, “PupDB: a database of pupylated proteins,” BMC Bioinformatics, vol. 13, no. 1, article 40, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. R. L. Welchman, C. Gordon, and R. J. Mayer, “Ubiquitin and ubiquitin-like proteins as multifunctional signals,” Nature Reviews Molecular Cell Biology, vol. 6, no. 8, pp. 599–609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Hershko and A. Ciechanover, “The ubiquitin system,” Annual Review of Biochemistry, vol. 67, pp. 425–479, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. F. Striebel, F. Imkamp, M. Sutter, M. Steiner, A. Mamedov, and E. Weber-Ban, “Bacterial ubiquitin-like modifier Pup is deamidated and conjugated to substrates by distinct but homologous enzymes,” Nature Structural and Molecular Biology, vol. 16, no. 6, pp. 647–651, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. E. Guth, M. Thommen, and E. Weber-Ban, “Mycobacterial ubiquitin-like protein ligase PafA follows a two-step reaction pathway with a phosphorylated Pup intermediate,” Journal of Biological Chemistry, vol. 286, no. 6, pp. 4412–4419, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. F. A. Cerda-Maira, F. McAllister, N. J. Bode, K. E. Burns, S. P. Gygi, and K. H. Darwin, “Reconstitution of the Mycobacterium tuberculosis pupylation pathway in Escherichia coli,” EMBO Reports, vol. 12, no. 8, pp. 863–870, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Poulsen, Y. Akhter, A. H.-W. Jeon et al., “Proteome-wide identification of mycobacterial pupylation targets,” Molecular systems biology, vol. 6, p. 386, 2010. View at Google Scholar · View at Scopus
  10. J. Watrous, K. Burns, W.-T. Liu et al., “Expansion of the mycobacterial “pUPylome”,” Molecular BioSystems, vol. 6, no. 2, pp. 376–385, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. Z. Liu, Q. Ma, J. Cao, X. Gao, J. Ren, and Y. Xue, “GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins,” Molecular BioSystems, vol. 7, no. 10, pp. 2737–2740, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. K.-C. Chou and H.-B. Shen, “Hum-PLoc: a novel ensemble classifier for predicting human protein subcellular localization,” Biochemical and Biophysical Research Communications, vol. 347, no. 1, pp. 150–157, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. K.-C. Chou and H.-B. Shen, “Large-scale plant protein subcellular location prediction,” Journal of Cellular Biochemistry, vol. 100, no. 3, pp. 665–678, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. Y. Huang, B. Niu, Y. Gao, L. Fu, and W. Li, “CD-HIT Suite: a web server for clustering and comparing biological sequences,” Bioinformatics, vol. 26, no. 5, Article ID btq003, pp. 680–682, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. W. Li and A. Godzik, “Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences,” Bioinformatics, vol. 22, no. 13, pp. 1658–1659, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. L.-L. Hu, Z. Li, K. Wang et al., “Prediction and analysis of protein methylarginine and methyllysine based on Multisequence features,” Biopolymers, vol. 95, no. 11, pp. 763–771, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Zhao, X. Li, Z. Ma, and M. Yin, “Prediction of lysine ubiquitylation with ensemble classifier and feature selection,” International Journal of Molecular Sciences, vol. 12, no. 12, pp. 8347–8361, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Kawashima and M. Kanehisa, “AAindex: amino acid index database,” Nucleic Acids Research, vol. 28, no. 1, p. 374, 2000. View at Google Scholar · View at Scopus
  19. S. Kawashima, P. Pokarowski, M. Pokarowska, A. Kolinski, T. Katayama, and M. Kanehisa, “AAindex: amino acid index database, progress report 2008,” Nucleic Acids Research, vol. 36, no. 1, pp. D202–D205, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. R. Atchley, J. Zhao, A. D. Fernandes, and T. Drüke, “Solving the protein sequence metric problem,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 18, pp. 6395–6400, 2005. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Torkamani and N. J. Schork, “Accurate prediction of deleterious protein kinase polymorphisms,” Bioinformatics, vol. 23, no. 21, pp. 2918–2925, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. N. D. Rubinstein, I. Mayrose, and T. Pupko, “A machine-learning approach for predicting B-cell epitopes,” Molecular Immunology, vol. 46, no. 5, pp. 840–847, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Marsella, F. Sirocco, A. Trovato, F. Seno, and S. C. E. Tosatto, “REPETITA: detection and discrimination of the periodicity of protein solenoid repeats by discrete Fourier transform,” Bioinformatics, vol. 25, no. 12, pp. i289–i295, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. T. Huang, P. Wang, Z. Ye et al., “Prediction of deleterious non-synonymous SNPs based on protein interaction network and hybrid properties,” PLoS ONE, vol. 5, no. 7, Article ID e11900, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. S. F. Altschul, T. L. Madden, A. A. Schäffer et al., “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, vol. 25, no. 17, pp. 3389–3402, 1997. View at Publisher · View at Google Scholar · View at Scopus
  26. C.-W. Tung and S.-Y. Ho, “Computational identification of ubiquitylation sites from protein sequences,” BMC Bioinformatics, vol. 9, article 310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. P. Radivojac, V. Vacic, C. Haynes et al., “Identification, analysis, and prediction of protein ubiquitination sites,” Proteins, vol. 78, no. 2, pp. 365–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. C. L. Sun, Z. Z. Shi, X. B. Zhou, L. N. Chen, and X. M. Zhao, “Prediction of s-glutathionylation sites based on protein sequences,” PLoS ONE, vol. 8, no. 2, Article ID e55512, 2013. View at Google Scholar
  29. B. Q. Li, L. L. Hu, L. Chen, K. Y. Feng, Y. D. Cai, and K. C. Chou, “Prediction of protein domain with mRMR feature selection and analysis,” PLoS ONE, vol. 7, Article ID e39308, 2012. View at Google Scholar
  30. L.-L. Hu, S.-B. Wan, S. Niu et al., “Prediction and analysis of protein palmitoylation sites,” Biochimie, vol. 93, no. 3, pp. 489–496, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. B. He, K. Wang, Y. Liu, B. Xue, V. N. Uversky, and A. K. Dunker, “Predicting intrinsic disorder in proteins: an overview,” Cell Research, vol. 19, no. 8, pp. 929–949, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. R. B. Russell and T. J. Gibson, “A careful disorderliness in the proteome: sites for interaction and targets for future therapies,” FEBS Letters, vol. 582, no. 8, pp. 1271–1275, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. K. Peng, P. Radivojac, S. Vucetic, A. K. Dunker, and Z. Obradovic, “Length-dependent prediction of protein in intrinsic disorder,” BMC Bioinformatics, vol. 7, article 208, 2006. View at Publisher · View at Google Scholar · View at Scopus
  34. L. J. McGuffin, K. Bryson, and D. T. Jones, “The PSIPRED protein structure prediction server,” Bioinformatics, vol. 16, no. 4, pp. 404–405, 2000. View at Google Scholar · View at Scopus
  35. C. N. I. Pang, A. Hayen, and M. R. Wilkins, “Surface accessibility of protein post-translational modifications,” Journal of Proteome Research, vol. 6, no. 5, pp. 1833–1845, 2007. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi, “SCRATCH: a protein structure and structural feature prediction server,” Nucleic Acids Research, vol. 33, no. 2, pp. W72–W76, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Peng, F. Long, and C. Ding, “Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. C. Ding and H. Peng, “Minimum redundancy feature selection from microarray gene expression data,” Journal of Bioinformatics and Computational Biology, vol. 3, no. 2, pp. 185–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. Z. Qian, Y.-D. Cai, and Y. Li, “A novel computational method to predict transcription factor DNA binding preference,” Biochemical and Biophysical Research Communications, vol. 348, no. 3, pp. 1034–1037, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C.-C. Chang and C.-J. Lin, “LIBSVM: a Library for support vector machines,” ACM Transactions on Intelligent Systems and Technology, vol. 2, no. 3, article 27, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. K.-C. Chou and C.-T. Zhang, “Prediction of protein structural classes,” Critical Reviews in Biochemistry and Molecular Biology, vol. 30, no. 4, pp. 275–349, 1995. View at Google Scholar · View at Scopus
  42. K.-C. Chou and H.-B. Shen, “Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms,” Nature Protocols, vol. 3, no. 2, pp. 153–162, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. K.-C. Chou and H.-B. Shen, “Recent progress in protein subcellular location prediction,” Analytical Biochemistry, vol. 370, no. 1, pp. 1–16, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. X. Zheng, T. Liu, and J. Wang, “A complexity-based method for predicting protein subcellular location,” Amino Acids, vol. 37, no. 2, pp. 427–433, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H.-B. Shen and K.-C. Chou, “Predicting protein subnuclear location with optimized evidence-theoretic K-nearest classifier and pseudo amino acid composition,” Biochemical and Biophysical Research Communications, vol. 337, no. 3, pp. 752–756, 2005. View at Publisher · View at Google Scholar · View at Scopus