Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 135189, 10 pages
http://dx.doi.org/10.1155/2013/135189
Research Article

Nonviral Gene Targeting at rDNA Locus of Human Mesenchymal Stem Cells

State Key Laboratory of Medical Genetics, Central South University, 110 Xiangya Road, Changsha, Hunan 410078, China

Received 3 April 2013; Accepted 18 April 2013

Academic Editor: Ken-ichi Isobe

Copyright © 2013 Youjin Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. E. Bittner, C. Schöfer, K. Weipoltshammer et al., “Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice,” Anatomy and Embryology, vol. 199, no. 5, pp. 391–396, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. E. Ferreira, E. Potier, D. Logeart-Avramoglou, S. Salomskaite-Davalgiene, L. M. Mir, and H. Petite, “Optimization of a gene electrotransfer method for mesenchymal stem cell transfection,” Gene Therapy, vol. 15, no. 7, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. D. Baksh, L. Song, and R. S. Tuan, “Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy,” Journal of Cellular and Molecular Medicine, vol. 8, no. 3, pp. 301–316, 2004. View at Google Scholar · View at Scopus
  4. B. F. Benabdallah, E. Allard, S. Yao et al., “Targeted gene addition to human mesenchymal stromal cells as a cell-based plasma-soluble protein delivery platform,” Cytotherapy, vol. 12, no. 3, pp. 394–399, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. Kucerova, V. Altanerova, M. Matuskova, S. Tyciakova, and C. Altaner, “Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy,” Cancer Research, vol. 67, no. 13, pp. 6304–6313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Ellis, “Silencing and variegation of gammaretrovirus and lentivirus vectors,” Human Gene Therapy, vol. 16, no. 11, pp. 1241–1246, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Hacein-Bey-Abina, C. Von Kalle, M. Schmidt et al., “LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1,” Science, vol. 302, no. 5644, pp. 415–419, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Sakai, T. Ohta, S. Minoshima et al., “Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence,” Genomics, vol. 26, no. 3, pp. 521–526, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. D. M. Stults, M. W. Killen, H. H. Pierce, and A. J. Pierce, “Genomic architecture and inheritance of human ribosomal RNA gene clusters,” Genome Research, vol. 18, no. 1, pp. 13–18, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Lisowski, A. Lau, Z. Wang et al., “Ribosomal DNA integrating rAAV-rDNA vectors allow for stable transgene expression,” Molecular Therapy, vol. 20, no. 10, pp. 1912–1923, 2012. View at Google Scholar
  11. D. Schenkwein, V. Turkki, M. K. Ahlroth, O. Timonen, K. J. Airenne, and S. Yla-Herttuala, “rDNA-directed integration by an HIV-1 integrase—I-PpoI fusion protein,” Nucleic Acids Research, vol. 41, pp. 1–10, 2012. View at Google Scholar
  12. Z. Wang, L. Lisowski, M. J. Finegold, H. Nakai, M. A. Kay, and M. Grompe, “AAV vectors containing rDNA homology display increased chromosomal integration and transgene persistence,” Molecular Therapy, vol. 20, no. 10, pp. 1902–1911, 2012. View at Google Scholar
  13. X. Liu, Y. Wu, Z. Li et al., “Targeting of the human coagulation factor IX gene at rDNA locus of human embryonic stem cells,” PLoS ONE, vol. 7, no. 5, Article ID e37071, 2012. View at Google Scholar
  14. X. Liu, M. Liu, Z. Xue et al., “Non-viral ex vivo transduction of human hepatocyte cells to express factor VIII using a human ribosomal DNA-targeting vector,” Journal of Thrombosis and Haemostasis, vol. 5, no. 2, pp. 347–351, 2007. View at Publisher · View at Google Scholar · View at Scopus
  15. E. H. Javazon, K. J. Beggs, and A. W. Flake, “Mesenchymal stem cells: paradoxes of passaging,” Experimental Hematology, vol. 32, no. 5, pp. 414–425, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. M. M. Bonab, K. Alimoghaddam, F. Talebian, S. H. Ghaffari, A. Ghavamzadeh, and B. Nikbin, “Aging of mesenchymal stem cell in vitro,” BMC Cell Biology, vol. 7, article 14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. U. Lindner, J. Kramer, J. Behrends et al., “Improved proliferation and differentiation capacity of human mesenchymal stromal cells cultured with basement-membrane extracellular matrix proteins,” Cytotherapy, vol. 12, no. 8, pp. 992–1005, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Tamama, H. Kawasaki, and A. Wells, “Epidermal growth factor (EGF) treatment on multipotential stromal cells (MSCs). Possible enhancement of therapeutic potential of MSC,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 795385, 10 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Jung, A. Sen, L. Rosenberg, and L. A. Behie, “Identification of growth and attachment factors for the serum-free isolation and expansion of human mesenchymal stromal cells,” Cytotherapy, vol. 12, no. 5, pp. 637–657, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. K. Chieregato, S. Castegnaro, D. Madeo, G. Astori, M. Pegoraro, and F. Rodeghiero, “Epidermal growth factor, basic fibroblast growth factor and platelet-derived growth factor-bb can substitute for fetal bovine serum and compete with human platelet-rich plasma in the ex vivo expansion of mesenchymal stromal cells derived from adipose tissue,” Cytotherapy, vol. 13, no. 8, pp. 933–943, 2011. View at Google Scholar
  21. B. Gharibi and F. J. Hughes, “Effects of medium supplements on proliferation, differentiation potential, and in vitro expansion of mesenchymal stem cells,” Stem Cells Translational Medicine, vol. 1, no. 11, pp. 771–782, 2012. View at Google Scholar
  22. M. F. Pittenger, A. M. Mackay, S. C. Beck et al., “Multilineage potential of adult human mesenchymal stem cells,” Science, vol. 284, no. 5411, pp. 143–147, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Friedenstein, R. K. Chailakhjan, and K. S. Lalykina, “The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells,” Cell and Tissue Kinetics, vol. 3, no. 4, pp. 393–403, 1970. View at Google Scholar · View at Scopus
  24. A. A. Stewart, C. R. Byron, H. Pondenis, and M. C. Stewart, “Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis,” American Journal of Veterinary Research, vol. 68, no. 9, pp. 941–945, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Pons, Y. Huang, J. Arakawa-Hoyt et al., “VEGF improves survival of mesenchymal stem cells in infarcted hearts,” Biochemical and Biophysical Research Communications, vol. 376, no. 2, pp. 419–422, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. L. Douglas, “Toward development of artificial viruses for gene therapy: a comparative evaluation of viral and non-viral transfection,” Biotechnology Progress, vol. 24, no. 4, pp. 871–883, 2008. View at Publisher · View at Google Scholar · View at Scopus
  27. E. H. Chowdhury, “Nuclear targeting of viral and non-viral DNA,” Expert Opinion on Drug Delivery, vol. 6, no. 7, pp. 697–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. K. A. Partridge and R. O. C. Oreffo, “Gene delivery in bone tissue engineering: progress and prospects using viral and nonviral strategies,” Tissue Engineering, vol. 10, no. 1-2, pp. 295–307, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. C. L. Da Silva, C. Madeira, R. D. Mendes et al., “Nonviral gene delivery to mesenchymal stem cells using cationic liposomes for gene and cell therapy,” Journal of Biomedicine and Biotechnology, vol. 2010, Article ID 735349, 12 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Di Matteo, E. Belay, M. K. Chuah, and T. Vandendriessche, “Recent developments in transposon-mediated gene therapy,” Expert Opinion on Biological Therapy, vol. 12, no. 7, pp. 841–858, 2012. View at Google Scholar
  31. E. L. Aronovich, R. S. McIvor, and P. B. Hackett, “The Sleeping Beauty transposon system: a non-viral vector for gene therapy,” Human Molecular Genetics, vol. 20, no. 1, pp. R14–R20, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Bollag, A. S. Waldman, and R. M. Liskay, “Homologous recombination in mammalian cells,” Annual Review of Genetics, vol. 23, pp. 199–225, 1989. View at Google Scholar · View at Scopus
  33. S. Iiizumi, A. Kurosawa, S. So et al., “Impact of non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting,” Nucleic Acids Research, vol. 36, no. 19, pp. 6333–6342, 2008. View at Publisher · View at Google Scholar · View at Scopus
  34. R. J. Yáñez and A. C. G. Porter, “Gene targeting is enhanced in human cells overexpressing hRAD51,” Gene Therapy, vol. 6, no. 7, pp. 1282–1290, 1999. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Voelkel-Meiman, R. L. Keil, and G. S. Roeder, “Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I,” Cell, vol. 48, no. 6, pp. 1071–1079, 1987. View at Google Scholar · View at Scopus
  36. H. Urawa, M. Hidaka, S. Ishiguro, K. Okada, and T. Horiuchi, “Enhanced homologous recombination caused by the non-transcribed spacer of the rDNA in arabidopsis,” Molecular Genetics and Genomics, vol. 266, no. 4, pp. 546–555, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Gupta, X. Meng, L. J. Zhu, N. D. Lawson, and S. A. Wolfe, “Zinc finger protein-dependent and -independent contributions to the in vivo off-target activity of zinc finger nucleases,” Nucleic Acids Research, vol. 39, no. 1, pp. 381–392, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. M. Murakami, L. T. Nguyen, K. Hatanaka et al., “FGF-dependent regulation of VEGF receptor 2 expression in mice,” Journal of Clinical Investigation, vol. 121, no. 7, pp. 2668–2678, 2011. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Rodrigues, L. G. Griffith, and A. Wells, “Growth factor regulation of proliferation and survival of multipotential stromal cells,” Stem Cell Research & Therapy, vol. 1, no. 4, p. 32, 2010. View at Google Scholar
  40. F. Wei, C. Qu, T. Song et al., “Vitamin C treatment promotes mesenchymal stem cell sheet formation and tissue regeneration by elevating telomerase activity,” Journal of Cellular Physiology, vol. 227, no. 9, pp. 3216–3224, 2011. View at Google Scholar
  41. T. C. Stadtman, “Specific occurrence of selenium in enzymes and amino acid tRNAs,” The FASEB Journal, vol. 1, no. 5, pp. 375–379, 1987. View at Google Scholar · View at Scopus
  42. H. Alves, A. Mentink, B. Le, C. A. van Blitterswijk, and J. de Boer, “Effect of antioxidant supplementation on the total yield, oxidative stress levels, and multipotency of bone marrow-derived human mesenchymal stromal cells,” Tissue Engineering A, vol. 19, no. 7-8, pp. 928–937, 2013. View at Google Scholar
  43. C. D. Porada, C. Sanada, C. J. Kuo et al., “Phenotypic correction of hemophilia A in sheep by postnatal intraperitoneal transplantation of FVIII-expressing MSC,” Experimental Hematology, vol. 39, no. 12, pp. 1124–1135, 2011. View at Google Scholar