Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013 (2013), Article ID 136859, 8 pages
http://dx.doi.org/10.1155/2013/136859
Research Article

Biodistribution of Amikacin Solid Lipid Nanoparticles after Pulmonary Delivery

1Department of Pharmaceutics, Faculty of Pharmacy and Drug Delivery Systems Research Center, Isfahan University of Medical Sciences, P.O. Box 14155-6451, Isfahan, Iran
2R&D and Quality Control Department, Iranian Parenteral and Pharmaceutical Co., P.O. Box 18735-568, Tehran, Iran
3Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
4Department of Pharmacology and Toxicology, Faculty of Pharmacy, Isfahan University of Medical Sciences, P.O. Box 14155-6451, Isfahan, Iran
5Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, Iran
6Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences, Shahid Beheshti University of Medical Sciences, P.O. Box 14155-6153, Tehran, Iran
7Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E1

Received 4 April 2013; Revised 28 June 2013; Accepted 12 July 2013

Academic Editor: Ruxana T. Sadikot

Copyright © 2013 J. Varshosaz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

The main purpose of the present work was studying the biodistribution of amikacin solid lipid nanoparticles (SLNs) after pulmonary delivery to increase its concentration in the lungs for treatment of cystic fibrosis lung infections and also providing a new method for clinical application of amikacin. To achieve this aim, 99mTc labelled amikacin was loaded in cholesterol SLNs and after in vitro optimization, the desired SLNs and free drug were administered through pulmonary and i.v. routes to male rats and qualitative and biodistribution studies were done. Results showed that pulmonary delivery of SLNs of amikacin by microsprayer caused higher drug concentration in lungs than kidneys while i.v. administration of free drug caused reverse conditions. It seems that pulmonary delivery of SLNs may improve patients' compliance due to reduction of drug side effects in kidneys and elongation of drug dosing intervals due to the sustained drug release from SLNs.