Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 154542, 7 pages
http://dx.doi.org/10.1155/2013/154542
Research Article

Toxicity and Binding Profile of Lectins from the Genus Canavalia on Brine Shrimp

1Integrated Laboratory of Biomolecules (LIBS-BioMol Group), Department of Pathology and Legal Medicine, Federal University of Ceará, 62042-280 Fortaleza, CE, Brazil
2Laboratory of Biologically Actives Molecules, Department of Biochemistry and Molecular Biology, Federal University of Ceará, 60440-970 Fortaleza, CE, Brazil
3Marine Biochemistry Laboratory, Fishing Engineering Department, Federal University of Ceará, 60440-970 Fortaleza, CE, Brazil

Received 16 July 2013; Accepted 24 October 2013

Academic Editor: Daiana Avila

Copyright © 2013 Francisco Vassiliepe Sousa Arruda et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. N. Sharon and H. Lis, Lectins, Kluwer Academic Publishers, Dordrecht, The Netherlands, 3rd edition, 2003.
  2. W. J. Peumans and E. J. van Damme, “Lectins as plant defense proteins,” Plant Physiology, vol. 109, no. 2, pp. 347–352, 1995. View at Google Scholar · View at Scopus
  3. D. C. Kilpatrick, “Animal lectins: a historical introduction and overview,” Biochimica et Biophysica Acta, vol. 1572, no. 2-3, pp. 187–197, 2002. View at Publisher · View at Google Scholar · View at Scopus
  4. N. Sharon and H. Lis, “History of lectins: from hemagglutinins to biological recognition molecules,” Glycobiology, vol. 14, no. 11, pp. 53R–62R, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. E. J. M. van Damme, W. J. Peumans, A. Barre, and P. Rougé, “Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles,” Critical Reviews in Plant Sciences, vol. 17, no. 6, pp. 575–692, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. B. S. Cavada, T. Barbosa, S. Arruda, T. B. Grangeiro, and M. Barral-Netto, “Revisiting proteus: do minor changes in lectin structure matter in biological activity? Lessons from and potential biotechnological uses of the Diocleinae subtribe lectins,” Current Protein and Peptide Science, vol. 2, no. 2, pp. 123–135, 2001. View at Publisher · View at Google Scholar · View at Scopus
  7. B. M. Vose and G. D. Bonnard, “Limiting dilution analysis of the frequency of human T cells and large granular lymphocytes proliferating in response to interleukin 2. I. The effect of lectin on the proliferative frequency and cytotoxic activity of cultured lymphoid cells,” The Journal of Immunology, vol. 130, no. 2, pp. 687–693, 1983. View at Google Scholar · View at Scopus
  8. K. Urech, G. Schaller, P. Ziska, and M. Giannattasio, “Comparative study on the cytotoxic effect of viscotoxin and mistletoe lectin on tumour cells in culture,” Phytotherapy Research, vol. 9, no. 1, pp. 49–55, 1995. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Alvarez, M. O. de Landazuri, G. D. Bonnard, and R. B. Herberman, “Cytotoxic activities of normal cultured human T cells,” The Journal of Immunology, vol. 121, no. 4, pp. 1270–1275, 1978. View at Google Scholar · View at Scopus
  10. M. V. Ramos, D. M. Mota, C. R. Teixeira, B. S. Cavada, and R. A. Moreira, “Isolation and partial characterisation of highly toxic lectins from Abrus pulchellus seeds,” Toxicon, vol. 36, no. 3, pp. 477–484, 1998. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Sorgeloos, C. R. van der Wielen, and G. Persoone, “The use of Artemia nauplii for toxicity tests—a critical analysis,” Ecotoxicology and Environmental Safety, vol. 2, no. 3-4, pp. 249–255, 1978. View at Google Scholar · View at Scopus
  12. G. Persoone, Proceeding of the International Symposium on Brine Shrimp, Artemia Salina, vol. 1–3, University Press, Wetteren, Belgium, 1980.
  13. J. L. Carballo, Z. L. Hernández-Inda, P. Pérez, and M. D. García-Grávalos, “A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products,” BMC Biotechnology, vol. 2, no. 17, pp. 1–5, 2002. View at Google Scholar
  14. F. Pervin, M. M. Hossain, S. Khatun et al., “Comparative cytotoxicity study of six bioactive lectins purified from pondweed (Potamogeton nodosus Poir) rootstock on brine shrimp,” Journal of Medical Sciences, vol. 6, no. 6, pp. 999–1002, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. J.-C. Ho, C.-M. Chen, and L.-C. Row, “Oleanane-type triterpenes from the flowers, pith, leaves, and fruit of Tetrapanax papyriferus,” Phytochemistry, vol. 68, no. 5, pp. 631–635, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. P. Vanhaecke, G. Persoone, C. Claus, and P. Sorgeloss, “Proposal for a short-term toxicity test with Artemia nauplii,” Ecotoxicology and Environmental Safety, vol. 5, no. 3, pp. 382–387, 1981. View at Google Scholar · View at Scopus
  17. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  18. D. J. Finney, Probit Analysis, vol. 18, University Press, Cambridge, UK, 3rd edition, 1971.
  19. A. T. R. Laurie and R. M. Jackson, “Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites,” Bioinformatics, vol. 21, no. 9, pp. 1908–1916, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. F. C. Bernstein, T. F. Koetzle, G. J. B. Williams et al., “The protein data bank: a computer based archival file for macromolecular structures,” Journal of Molecular Biology, vol. 112, no. 3, pp. 535–542, 1977. View at Google Scholar · View at Scopus
  21. P. Emsley and K. Cowtan, “Coot: model-building tools for molecular graphics,” Acta Crystallographica Section D, vol. 60, no. 1, pp. 2126–2132, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. W. L. DeLano, The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, Calif, USA, 2002.
  23. J. E. Thompson, R. P. Walker, and D. J. Faulkner, “Screening and bioassays for biologically-active substances from forty marine sponge species from San Diego, California, USA,” Marine Biology, vol. 88, no. 1, pp. 11–21, 1985. View at Publisher · View at Google Scholar · View at Scopus
  24. A. V. Krishnaraju, T. V. N. Rao, D. Sundararaju, M. Vanisree, H. S. Tsay, and G. V. Subbaraju, “Assessment of bioactivity of Indian medicinal plants using brine shrimp (Artemia salina) lethality assay,” International Journal of Applied Science and Engineering, vol. 3, no. 2, pp. 125–134, 2005. View at Google Scholar
  25. I. M. Vasconcelos, B. S. Cavada, R. A. Moreira, and J. T. A. Oliveira, “Purification and partial characterization of a lectin from the seeds of Dioclea guianensis,” Journal of Food Biochemistry, vol. 15, no. 2, pp. 137–154, 1991. View at Google Scholar
  26. M. A. Ali, M. A. Sayeed, and N. Absar, “Antibacterial activity and cytotoxicity of three lectins purified from Cassia fistula Linn. seeds,” Journal of Medical Sciences, vol. 3, no. 3, pp. 240–244, 2003. View at Google Scholar
  27. A. F. D. Santos, B. S. Cavada, B. A. M. D. Rocha, K. S. D. Nascimento, and A. E. G. Sant'Ana, “Toxicity of some glucose/mannose-binding lectins to Biomphalaria glabrata and Artemia salina,” Bioresource Technology, vol. 101, no. 2, pp. 794–798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. A. F. M. Vaz, R. M. P. B. Costa, A. M. M. A. Melo et al., “Biocontrol of Fusarium species by a novel lectin with low ecotoxicity isolated from Sebastiania jacobinensis,” Food Chemistry, vol. 119, no. 4, pp. 1507–1513, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. R. Vignes, “Dimethyl Sulfoxide (DMSO): a “new” clean, unique, superior solvent,” in Proceedings of the American Chemical Society Annual Meeting, pp. 20–24, Washington, DC, USA, 2000.
  30. A. Pusztai and S. Bardocz, “Biological effects of plant lectins on the gastrointestinal tract: metabolic consequences and applications,” Trends in Glycoscience and Glycotechnology, vol. 8, no. 41, pp. 149–165, 1996. View at Google Scholar · View at Scopus
  31. N. Sauvion, C. Nardon, G. Febvay, A. M. R. Gatehouse, and Y. Rahbé, “Binding of the insecticidal lectin Concanavalin A in pea aphid, Acyrthosiphon pisum (Harris) and induced effects on the structure of midgut epithelial cells,” Journal of Insect Physiology, vol. 50, no. 12, pp. 1137–1150, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. K. Miyake, T. Tanaka, and P. L. McNeil, “Lectin-based food poisoning: a new mechanism of protein toxicity,” PloS ONE, vol. 2, no. 1, article e687, 2007. View at Google Scholar · View at Scopus
  33. M. J. B. Bezerra, N. V. F. C. Rodrigues, A. F. Pires et al., “Crystal structure of Dioclea violacea lectin and a comparative study of vasorelaxant properties with Dioclea rostrata lectin,” The International Journal of Biochemistry & Cell Biology, vol. 45, no. 4, pp. 807–815, 2013. View at Google Scholar
  34. M. A. de Vasconcelos, C. O. Cunha, F. V. S. Arruda et al., “Lectin from Canavalia brasiliensis seeds (conbr) is a valuable biotechnological tool to stimulate the growth of Rhizobium tropici in vitro,” Molecules, vol. 17, no. 5, pp. 5244–5254, 2012. View at Google Scholar
  35. E. H. S. Bezerra, B. A. M. Rocha, C. S. Nagano et al., “Structural analysis of ConBr reveals molecular correlation between the carbohydrate recognition domain and endothelial NO synthase activation,” Biochemical and Biophysical Research Communications, vol. 408, no. 4, pp. 566–570, 2011. View at Publisher · View at Google Scholar · View at Scopus