Table of Contents Author Guidelines Submit a Manuscript
BioMed Research International
Volume 2013, Article ID 173682, 16 pages
Review Article

Roles of Organic Acid Anion Secretion in Aluminium Tolerance of Higher Plants

1Department of Agricultural Resources and Environmental Sciences, College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2Institute of Horticultural Plant Physiology, Biochemistry, and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
3Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou 350001, China
4Department of Life Sciences, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
5Department of Horticulture, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

Received 16 July 2012; Revised 4 October 2012; Accepted 30 October 2012

Academic Editor: Margarita Rodríguez Kessler

Copyright © 2013 Lin-Tong Yang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Approximately 30% of the world’s total land area and over 50% of the world’s potential arable lands are acidic. Furthermore, the acidity of the soils is gradually increasing as a result of the environmental problems including some farming practices and acid rain. At mildly acidic or neutral soils, aluminium(Al) occurs primarily as insoluble deposits and is essentially biologically inactive. However, in many acidic soils throughout the tropics and subtropics, Al toxicity is a major factor limiting crop productivity. The Al-induced secretion of organic acid (OA) anions, mainly citrate, oxalate, and malate, from roots is the best documented mechanism of Al tolerance in higher plants. Increasing evidence shows that the Al-induced secretion of OA anions may be related to the following several factors, including (a) anion channels or transporters, (b) internal concentrations of OA anions in plant tissues, (d) temperature, (e) root plasma membrane (PM) H+-ATPase, (f) magnesium (Mg), and (e) phosphorus (P). Genetically modified plants and cells with higher Al tolerance by overexpressing genes for the secretion and the biosynthesis of OA anions have been obtained. In addition, some aspects needed to be further studied are also discussed.